首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2109篇
  免费   99篇
  国内免费   23篇
测绘学   58篇
大气科学   157篇
地球物理   541篇
地质学   695篇
海洋学   217篇
天文学   349篇
综合类   6篇
自然地理   208篇
  2024年   6篇
  2023年   8篇
  2022年   9篇
  2021年   33篇
  2020年   40篇
  2019年   34篇
  2018年   49篇
  2017年   48篇
  2016年   73篇
  2015年   70篇
  2014年   66篇
  2013年   121篇
  2012年   89篇
  2011年   129篇
  2010年   89篇
  2009年   120篇
  2008年   117篇
  2007年   111篇
  2006年   104篇
  2005年   81篇
  2004年   83篇
  2003年   66篇
  2002年   68篇
  2001年   52篇
  2000年   38篇
  1999年   31篇
  1998年   36篇
  1997年   28篇
  1996年   32篇
  1995年   24篇
  1994年   26篇
  1993年   25篇
  1992年   21篇
  1991年   21篇
  1990年   15篇
  1989年   13篇
  1988年   18篇
  1987年   18篇
  1986年   13篇
  1985年   35篇
  1984年   24篇
  1983年   21篇
  1982年   18篇
  1981年   15篇
  1980年   8篇
  1979年   17篇
  1978年   11篇
  1977年   8篇
  1973年   6篇
  1971年   6篇
排序方式: 共有2231条查询结果,搜索用时 15 毫秒
71.
The seismic response of any system that accumulates damage under cyclic loading is dependent not only on the maximum amplitude of the motion but also its duration. This is explicitly recognized in methods for estimating the liquefaction potential of soil deposits. Many researchers have proposed that the effective number of cycles of the ground motion is a more robust indicator of the destructive capacity of the shaking than the duration. However, as is the case with strong‐motion duration, there is no universally accepted approach to determining the effective number of cycles of motion, and the different methods that have been proposed can give widely varying results for a particular accelerogram. Definitions of the effective number of cycles of motion are reviewed, classified and compared. Measurements are found to differ particularly for accelerograms with broad‐banded frequency content, which contain a significant number of non‐zero crossing peaks. The key seismological parameters influencing the number of cycles of motion and associated equations for predicting this quantity for future earthquakes are identified. Correlations between cycle counts and different duration measures are explored and found to be rather poor in the absence of additional parameters. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
72.
Spatial systems are typically characterized by multiple controlling factors and processes operating at different spatial and temporal scales (multiple scale causality [MSC]). An entropy decomposition‐based approach to MSC is presented here in two contexts. First, given maps or distributions of an observed phenomenon at two or more scales, the contribution at more local or global (relative to the primary scale of observation) controls to the observed entropy can be estimated. Second, a theoretical treatment of the entropy decomposition equations shows that as the range of scale is increased by broadening or narrowing resolutions or by incorporating more controls, the influence of larger or smaller‐scale influences not only changes, but may change qualitatively, e.g., in terms of having positive (entropy‐increasing) or negative (information‐increasing) effects. Such qualitative causal shifts have implications for efforts to use any single causal explanation across the molecular to planetary spatial and instantaneous to geological range of scales relevant to physical geography. The entropy decomposition method is illustrated with an application to soil landscapes in the Ouachita Mountains, Arkansas.  相似文献   
73.
Predictive vegetation modeling can be used statistically to relate the distribution of vegetation across a landscape as a function of important environmental variables. Often these models are developed without considering the spatial pattern that is inherent in biogeographical data, resulting from either biotic processes or missing or misspecified environmental variables. Including spatial dependence explicitly in a predictive model can be an efficient way to improve model accuracy with the available data. In this study, model residuals were interpolated and added to model predictions, and the resulting prediction accuracies were assessed. Adding kriged residuals improved model accuracy more often than adding simulated residuals, although some alliances showed no improvement or worse accuracy when residuals were added. In general, the prediction accuracies that were not increased by adding kriged residuals were either rare in the sample or had high nonspatial model accuracy. Regression interpolation methods can be an important addition to current tools used in predictive vegetation models as they allow observations that are predicted well by environmental variables to be left alone, while adjusting over‐ and underpredicted observations based on local factors.  相似文献   
74.
Worm‐like trace fossils, sometimes of large size, have regularly been reported from the otherwise generally poorly‐fossiliferous Permo‐Triassic continental red beds of the East Devon coast, southwest England. Selected examples are discussed here to outline the difficulties involved in elucidating the true producers of these burrows and interpreting their significance in the local palaeoenvironment.  相似文献   
75.
Current land-use classifications used to assess urbanization effects on stream water quality date back to the 1980s when limited information was available to characterize watershed attributes that mediate non-point source pollution. With high resolution remote sensing and widely used GIS tools, there has been a vast increase in the availability and precision of geospatial data of built environments. In this study, we leverage geospatial data to expand the characterization of developed landscapes and create a typology that allows us to better understand the impact of complex developed landscapes across the rural to urban gradient. We assess the ability of the developed landscape typology to reveal patterns in stream water chemistry previously undetected by traditional land-cover based classification. We examine the distribution of land-cover, infrastructure, topography and geology across 3876 National Hydrography Dataset Plus catchments in the Piedmont region of North Carolina, USA. From this dataset, we generate metrics to evaluate the abundance, density and position of landscape features relative to streams, catchment outlets and topographic wetness metrics. While impervious surfaces are a key distinguishing feature of the urban landscape, sanitary infrastructure, population density and geology are better predictors of baseflow stream water chemistry. Unsupervised clustering was used to generate a distinct developed landscape typology based on the expanded, high-resolution landscape feature information. Using stream chemistry data from 37 developed headwater catchments, we compared the baseflow water chemistry grouped by traditional land-cover based classes of urbanization (rural, low, medium and high density) to our composition and structure-based classification (a nine-class typology). The typology based on 22 metrics of developed landscape composition and structure explained over 50% of the variation in NO3-N, TDN, DOC, Cl, and Br concentration, while the ISC-based classification only significantly explained 23% of the variation in TDN. These results demonstrate the importance of infrastructure, population and geology in defining developed landscapes and improving discrete classes for water management.  相似文献   
76.
77.
Salinity has a major effect on water users in the Colorado River Basin, estimated to cause almost $300 million per year in economic damages. The Colorado River Basin Salinity Control Program implements and manages projects to reduce salinity loads, investing millions of dollars per year in irrigation upgrades, canal projects, and other mitigation strategies. To inform and improve mitigation efforts, there is a need to better understand sources of salinity to streams and how salinity has changed over time. This study explores salinity in the baseflow fraction of streamflow, assessing whether groundwater is a significant contributor of dissolved solids to streams in the Upper Colorado River Basin (UCRB). Chemical hydrograph separation was used to estimate baseflow discharge and baseflow dissolved solids loads at stream gages (n = 69) across the UCRB. On average, it is estimated that 89% of dissolved solids loads originate from the baseflow fraction of streamflow, indicating that subsurface transport processes play a dominant role in delivering dissolved solids to streams in the UCRB. A statistical trend analysis using weighted regressions on time, discharge, and season was used to evaluate changes in baseflow dissolved solids loads in streams (n = 27) from 1986 to 2011. Decreasing trends in baseflow dissolved solids loads were observed at 63% of streams. At the three most downstream sites, Green River at Green River, UT, Colorado River at Cisco, UT, and the San Juan River near Bluff, UT, baseflow dissolved solids loads decreased by a combined 823,000 metric tons (mT), which is approximately 69% of projected basin‐scale decreases in total dissolved solids loads as a result of salinity control efforts. Decreasing trends in baseflow dissolved solids loads suggest that salinity mitigation projects, landscape changes, and/or climate are reducing dissolved solids transported to streams through the subsurface. Notably, the pace and extent of decreases in baseflow dissolved solids loads declined during the most recent decade; average decreasing loads during the 2000s (28,200 mT) were only 54% of average decreasing loads in the 1990s (51,700 mT).  相似文献   
78.
79.
80.
Assuming homogeneity in alluvial aquifers is convenient, but limits our ability to accurately predict stream‐aquifer interactions. Research is needed on (i) identifying the presence of focused, as opposed to diffuse, groundwater discharge/recharge to streams and (ii) the magnitude and role of large‐scale bank and transient storage in alluvial floodplains relative to changes in stream stage. The objective of this research was to document and quantify the effect of stage‐dependent aquifer heterogeneity and bank storage relative to changes in stream stage using groundwater flow divergence and direction. Monitoring was performed in alluvial floodplains adjacent to the Barren Fork Creek and Honey Creek in northeastern Oklahoma. Based on results from subsurface electrical resistivity mapping, observation wells were installed in high and low electrical resistivity subsoils. Water levels in the wells were recorded real time using pressure transducers (August to October 2009). Divergence was used to quantify heterogeneity (i.e. variation in hydraulic conductivity, porosity, and/or aquifer thickness), and flow direction was used to assess the potential for large‐scale (100 m) bank or transient storage. Areas of localized heterogeneity appeared to act as divergence zones allowing stream water to quickly enter the groundwater system, or as flow convergence zones draining a large groundwater area. Maximum divergence or convergence occurred with maximum rates of change in flow rates or stream stage. Flow directions in the groundwater changed considerably between base and high flows, suggesting that the floodplains acted as large‐scale bank storage zones, rapidly storing and releasing water during passage of a storm hydrograph. During storm events at both sites, the average groundwater direction changed by at least 90° from the average groundwater direction during baseflow. Aquifer heterogeneity in floodplains yields hyporheic flows that are more responsive and spatially and temporally complex than would be expected compared to more common assumptions of homogeneity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号