首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   614篇
  免费   32篇
  国内免费   4篇
测绘学   22篇
大气科学   48篇
地球物理   141篇
地质学   226篇
海洋学   60篇
天文学   94篇
综合类   2篇
自然地理   57篇
  2024年   2篇
  2022年   2篇
  2021年   7篇
  2020年   8篇
  2019年   10篇
  2018年   19篇
  2017年   16篇
  2016年   18篇
  2015年   13篇
  2014年   21篇
  2013年   36篇
  2012年   29篇
  2011年   36篇
  2010年   30篇
  2009年   40篇
  2008年   46篇
  2007年   43篇
  2006年   33篇
  2005年   25篇
  2004年   26篇
  2003年   28篇
  2002年   21篇
  2001年   16篇
  2000年   16篇
  1999年   9篇
  1998年   6篇
  1997年   5篇
  1996年   6篇
  1995年   6篇
  1994年   5篇
  1993年   9篇
  1992年   2篇
  1991年   1篇
  1990年   5篇
  1989年   2篇
  1988年   5篇
  1987年   2篇
  1986年   2篇
  1985年   7篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1981年   6篇
  1980年   7篇
  1979年   2篇
  1978年   2篇
  1975年   4篇
  1974年   4篇
  1973年   3篇
  1971年   2篇
排序方式: 共有650条查询结果,搜索用时 15 毫秒
121.
122.
Rivers draining to the Great Barrier Reef are receiving increased attention with the realisation that European land use changes over the last  150 years may have increased river sediment yields, and that these may have adversely affected the reef environment. Mitigation of the effects associated with such changes is only possible if information on the spatial provenance and dominant types of erosion is known. To date, very few field-based studies have attempted to provide this information. This study uses fallout radionuclide (137Cs and 210Pbex) and geochemical tracing of river bed and floodplain sediments to examine sources over the last  250 years for Theresa Creek, a subcatchment of the Fitzroy River basin, central Queensland, Australia. A Monte Carlo style mixing model is used to predict the relative contribution of both the spatial (geological) sources and erosion types. The results indicate that sheetwash and rill erosion from cultivated basaltic land and channel erosion from non-basaltic parts of the catchment are currently contributing most sediment to the river system. Evidence indicates that the dominant form of channel erosion is gully headcut and sidewall erosion. Sheetwash and rill erosion from uncultivated land (i.e., grazed pasture/woodland) is a comparatively minor contributor of sediment to the river network. Analysis of the spatial provenance of floodplain core sediments, in conjunction with optical dating and 137Cs depth profile data, suggests that a phase of channel erosion was initiated in the late nineteenth century. With the development of land underlain by basalt in the mid-twentieth century the dominant source of erosion shifted to cultivated land, although improvements in land management practices have probably resulted in a decrease in sediment yield from cultivated areas in the later half of the twentieth century. On a basin-wide scale, because of the limited spatial extent of cultivation, channel sources are likely to be the largest contributor of sediment to the Fitzroy River. Accordingly, catchment management measures focused on reducing sediment delivery to the Great Barrier Reef should focus primarily on decreasing erosion from channel sources.  相似文献   
123.
124.
Climate changes brought on by increasing greenhouse gases in the atmosphere are expected to have a significant effect on the Pacific Northwest hydrology during the 21st century. Many climate model simulations project higher mean annual temperatures and temporal redistribution of precipitation. This is of particular concern for highly urbanized basins where runoff changes are more vulnerable to changes in climate. The Rock Creek basin, located in the Portland metropolitan area, has been experiencing rapid urban growth throughout the last 30 years, making it an ideal study area for assessing the effect of climate and land cover changes on runoff. A combination of climate change and land cover change scenarios for 2040 with the semi‐distributed AVSWAT (ArcView Soil and Water Assessment Tool) hydrological model was used to determine changes in mean runoff depths in the 2040s (2030–2059) from the baseline period (1973–2002) at the monthly, seasonal, and annual scales. Statistically downscaled climate change simulation results from the ECHAM5 general circulation model (GCM) found that the region would experience an increase of 1·2 °C in the average annual temperature and a 2% increase in average annual precipitation from the baseline period. AVSWAT simulation shows a 2·7% increase in mean annual runoff but a 1·6% decrease in summer runoff. Projected climate change plus low‐density, sprawled urban development for 2040 produced the greatest change to mean annual runoff depth (+5·5%), while climate change plus higher‐density urban development for 2040 resulted in the smallest change (+5·2%), when compared with the climate and land cover of the baseline period. This has significant implications for water resource managers attempting to implement adaptive water resource policies to future changes resulting from climate and urbanization. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
125.
In situ Sr-isotope data by microdrilling, coupled with major and trace element analyses, have been performed on plagioclase and clinopyroxene from seven samples collected during the 2002–2003 eruptive crisis at Stromboli volcano (Aeolian Islands, Italy). On 28 December 2002, the persistent moderate explosive activity was broken by an effusive event lasting about 7 months. A more violent explosion (paroxysm) occurred on 5 April 2003. Two magma types were erupted, namely a volatile-poor and highly porphyritic magma (HP-magma) poured out as scoria or lava and a volatile-rich, phenocryst-poor magma (LP-magma) found as pumice. LP-magma differs from the HP-magma also for its slightly less-evolved chemistry, the groundmass composition and the lower Sr-isotope ratios. Micro-Sr-isotope data show the presence of zoned minerals in strong isotope disequilibrium, as previously found in products erupted in 1984, 1985 and 1996 AD, with 87Sr/86Sr values generally decreasing from cores to rims of minerals. Only some outer rims testify for equilibrium with the host groundmass. The internal mineral zones with high Sr-isotope ratios (0.70665–0.70618) are interpreted as ‘antecrysts’, crystallised during the previous activity and recycled in the present-day system since the opening shoshonitic activity of the Recent Period, which occurred at about 2.5 ka ago. This result has implications for the dynamics of the present-day plumbing system of Stromboli at intermediate pressure (about 2–3 km depth) and allows us to propose a model whereby an HP-magma reservoir is directly interconnected at the bottom with a cumulate crystal much reservoir. Efficient mixing between residing HP- and input LP-magmas can occur in this reservoir, due to more similar rheological characteristics of the two magmas than in the conduit, where crystallisation is enhanced by degassing. Antecrysts (and possibly melts) re-enter in the HP-magma reservoir both from the bottom, recycled by ascending LP-magmas crossing the crystal mush, and from the top, recycled by descending degassed and dense HP-magma, residual of the periodic Strombolian explosions at the surface. The isotope variation measured in the groundmasses allows calculating the proportion of the LP-magma entering the shallow HP-magma reservoir at ~20%. From this proportion, we estimate that the total volume of LP-magma input during 2002–2003 closely matches the magma volume erupted in the effusive event, suggesting a steady-state system at broadly constant volume. The comparison with estimates of the LP-magma volume ejected by the paroxysm indicates that the LP-magma amount directly reaching the surface during the 5 April paroxysm is minimal with respect to that entering the system.  相似文献   
126.
Recent studies using remote sensing analysis of lake‐rich thermokarst landscapes have documented evidence of declining lake surface area in response to recent warming. However, images alone cannot identify whether these declines are due to increasing frequency of lake drainage events associated with accelerated thermokarst activity or to increasing evaporation in response to longer ice‐free season duration. Here, we explore the potential of combining aerial photograph time series with paleolimnological analyses to track changes in hydrological conditions of a thermokarst lake in the Old Crow Flats (OCF), Canada, and to identify their causes. Images show that the water level in lake OCF 48 declined markedly sometime between 1972 and 2001. In a sediment core from OCF 48, complacent stratigraphic profiles of several physical, geochemical, and biological parameters from ~1874–1967 indicate hydro‐limnological conditions were relatively stable. From ~1967–1989, declines in organic matter content, organic carbon isotope values, and pigment concentrations are interpreted to reflect an increase in supply of minerogenic sediment, and subsequent decline in aquatic productivity, caused by increased thermo‐erosion of shoreline soils. Lake expansion was likely caused by increased summer rainfall, as recorded by increased cellulose‐inferred lake‐water oxygen isotope compositions. Stratigraphic trends defining the lake expansion phase terminated at ~1989, which likely marks the year when the lake drained. Above‐average precipitation during the previous year probably raised the lake level and promoted further thermo‐erosion of the shoreline soils that caused the lake to drain. These are meteorological conditions that have led to other recent lake‐drainage events in the OCF. Thus, the decline in lake level, evident in the aerial photograph from 2001, is unlikely to have been caused by evaporation, but rather is a remnant of a drainage event that took place more than a decade earlier. After drainage, the lake began to refill, and most paleolimnological parameters approach levels that are similar to those during the stable phase. These findings indicate that combined use of aerial images and paleolimnological methods offers much promise for identifying the hydrological consequences of recent climatic variations on thermokarst lakes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
127.
128.
The purpose of the article is to investigate how the hegemony of traditional regional policy in Norway has been weakened in favour of policies of a new type, derived from the combined effect of climate concerns and a search for increased structural efficiency. This phenomenon is identified as an ‘eco-spatial’ turn that marks a new policy regime with changing agendas. The policy transition is analysed by drawing on existing scientific literature in the fields concerned, central policy documents, and relevant news articles. The results of the analysis substantiate that a decisive turn has taken place, with the period of transition between the two policy types identified as 1992–2015. This shift in policy orientation has important institutional and political consequences, including the move from a perspective of demographic and economic expansion in space to one of contraction and a subsequent creation of spatial scarcity. To conclude, the author questions whether the new policy position is viable, given the deep-rooted nature of regional cleavages within Norwegian society. However, the formal institutional ability to deal with the situation at the national level is in place, since national planning and regional policies have finally been gathered within the confines of one ministry.  相似文献   
129.
The atmospheric concentration of carbon dioxide is expected to double in the next century causing increased temperatures and decreasing precipitation in some regions of the U.S. The increase in CO2 will also directly affect stomatal conductance of plants. At the first-order watershed scale, changes in evaporative demand, transpiration, and runoff will also occur. Previous modeling studies of the effect of increased CO2 on the water budgets of watersheds have been single-factor exercises where a single parameter representing stomatal conductance was reduced and the results noted. After showing validation results of the hydrology module, we used a comprehensive ecosystem model to examine the consequences of changes in precipitation, temperature, and CO2-induced plant-function characteristics on small-basin runoff. As a result of the complex interactions and of the compensatory mechanisms simulated by the model, we conclude that for arid and semiarid watersheds of the western United States, there will be little change or an actual decrease in surface runoff because of increased CO2 and climate change. This is due to the decrease in precipitation imposed on the model simulations. Implementing stomatal closure in the model did not increase runoff from the watersheds when temperatures were increased and precipitation decreased.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号