全文获取类型
收费全文 | 899篇 |
免费 | 35篇 |
国内免费 | 4篇 |
专业分类
测绘学 | 28篇 |
大气科学 | 77篇 |
地球物理 | 202篇 |
地质学 | 350篇 |
海洋学 | 74篇 |
天文学 | 127篇 |
综合类 | 2篇 |
自然地理 | 78篇 |
出版年
2022年 | 4篇 |
2021年 | 10篇 |
2020年 | 10篇 |
2019年 | 17篇 |
2018年 | 25篇 |
2017年 | 22篇 |
2016年 | 21篇 |
2015年 | 18篇 |
2014年 | 27篇 |
2013年 | 46篇 |
2012年 | 34篇 |
2011年 | 45篇 |
2010年 | 33篇 |
2009年 | 52篇 |
2008年 | 60篇 |
2007年 | 48篇 |
2006年 | 53篇 |
2005年 | 36篇 |
2004年 | 41篇 |
2003年 | 44篇 |
2002年 | 28篇 |
2001年 | 22篇 |
2000年 | 21篇 |
1999年 | 17篇 |
1998年 | 7篇 |
1997年 | 9篇 |
1996年 | 12篇 |
1995年 | 9篇 |
1994年 | 6篇 |
1993年 | 16篇 |
1992年 | 4篇 |
1990年 | 8篇 |
1989年 | 8篇 |
1988年 | 8篇 |
1987年 | 6篇 |
1985年 | 12篇 |
1984年 | 6篇 |
1983年 | 6篇 |
1982年 | 4篇 |
1981年 | 8篇 |
1980年 | 13篇 |
1979年 | 3篇 |
1978年 | 4篇 |
1977年 | 3篇 |
1976年 | 4篇 |
1975年 | 5篇 |
1974年 | 4篇 |
1973年 | 6篇 |
1971年 | 3篇 |
1930年 | 3篇 |
排序方式: 共有938条查询结果,搜索用时 15 毫秒
81.
Duncan D. Muir Jon D. Blundy Michael C. Hutchinson Alison C. Rust 《Contributions to Mineralogy and Petrology》2014,167(3):1-25
Uturuncu is a dormant volcano in the Altiplano of SW Bolivia. A present day ~70 km diameter interferometric synthetic aperture radar (InSAR) anomaly roughly centred on Uturuncu’s edifice is believed to be a result of magma intrusion into an active crustal pluton. Past activity at the volcano, spanning 0.89 to 0.27 Ma, is exclusively effusive and almost all lavas and domes are dacitic with phenocrysts of plagioclase, orthopyroxene, biotite, ilmenite and Ti-magnetite plus or minus quartz, and microlites of plagioclase and orthopyroxene set in rhyolitic groundmass glass. Plagioclase-hosted melt inclusions (MI) are rhyolitic with major element compositions that are similar to groundmass glasses. H2O concentrations plotted versus incompatible elements for individual samples describe a trend typical of near-isobaric, volatile-saturated crystallisation. At 870 °C, the average magma temperature calculated from Fe–Ti oxides, the average H2O of 3.2 ± 0.7 wt% and CO2 typically <160 ppm equate to MI trapping pressures of 50–120 MPa, approximately 2–4.5 km below surface. Such shallow storage precludes the role of dacite magma emplacement into pre-eruptive storage regions as being the cause of the observed InSAR anomaly. Storage pressures, whole-rock (WR) chemistry and phase assemblage are remarkably consistent across the eruptive history of the volcano, although magmatic temperatures calculated from Fe–Ti oxide geothermometry, zircon saturation thermometry using MI and orthopyroxene-melt thermometry range from 760 to 925 °C at NNO ± 1 log. This large temperature range is similar to that of saturation temperatures of observed phases in experimental data on Uturuncu dacites. The variation in calculated temperatures is attributed to piecemeal construction of the active pluton by successive inputs of new magma into a growing volume of plutonic mush. Fluctuating temperatures within the mush can account for sieve-textured cores and complex zoning in plagioclase phenocrysts, resorption of quartz and biotite phenocrysts and apatite microlites. That Fe–Ti oxide temperatures vary by ~50–100 °C in a single thin section indicates that magmas were not homogenised effectively prior to eruption. Phenocryst contents do not correlate with calculated magmatic temperatures, consistent with crystal entrainment from the mush during magma ascent and eruption. Microlites grew during ascent from the magma storage region. Variability in the proportion of microlites is attributed to differing ascent and effusion rates with faster rates in general for lavas >0.5 Ma compared to those <0.5 Ma. High microlite contents of domes indicate that effusion rates were probably slowest in dome-forming eruptions. Linear trends in WR major and trace element chemistries, highly variable, bimodal mineral compositions, and the presence of mafic enclaves in lavas demonstrate that intrusion of more mafic magmas into the evolving, shallow plutonic mush also occurred further amplifying local temperature fluctuations. Crystallisation and resorption of accessory phases, particularly ilmenite and apatite, can be detected in MI and groundmass glass trace element covariation trends, which are oblique to WRs. Marked variability of Ba, Sr and La in MI can be attributed to temperature-controlled, localised crystallisation of plagioclase, orthopyroxene and biotite within the evolving mush. 相似文献
82.
Carolyn Barnes Simon Jennings Jon. T. Barry 《Estuarine, Coastal and Shelf Science》2009,81(3):368-374
Carbon stable isotopes can be used to trace the sources of energy supporting food chains and to estimate the contribution of different sources to a consumer's diet. However, the δ13C signature of a consumer is not sufficient to infer source without an appropriate isotopic baseline, because there is no way to determine if differences in consumer δ13C reflect source changes or baseline variation. Describing isotopic baselines is a considerable challenge when applying stable isotope techniques at large spatial scales and/or to interconnected food chains in open marine environments. One approach is to use filter-feeding consumers to integrate the high frequency and small-scale variation in the isotopic signature of phytoplankton and provide a surrogate baseline, but it can be difficult to sample a single consumer species at large spatial scales owing to rarity and/or discontinuous distribution. Here, we use the isotopic signature of a widely distributed filter-feeder (the queen scallop Aequipecten opercularis) in the north-eastern Atlantic to develop a model linking base δ13C to environmental variables. Remarkably, a single variable model based on bottom temperature has good predictive power and predicts scallop δ13C with mean error of only 0.6‰ (3%). When the model was used to predict an isotopic baseline in parts of the overall study region where scallop were not consistently sampled, the model accounted for 76% and 79% of the large-scale spatial variability (101–104 km) of the δ13C of two fish species (dab Limanda limanda and whiting Merlangus merlangius) and 44% of the δ13C variability in a mixed fish community. The results show that source studies would be significantly biased if a single baseline were applied to food webs at larger scales. Further, when baseline δ13C cannot be directly measured, a calculated baseline value can eliminate a large proportion of the unexplained variation in δ13C at higher trophic levels. 相似文献
83.
Lateral moraines constructed along west to east sloping outlet glaciers from mountain centred, pre-last glacial maximum (LGM) ice fields of limited extent remain largely preserved in the northern Swedish landscape despite overriding by continental ice sheets, most recently during the last glacial. From field evidence, including geomorphological relationships and a detailed weathering profile including a buried soil, we have identified seven such lateral moraines that were overridden by the expansion and growth of the Fennoscandian ice sheet. Cosmogenic 10Be and 26Al exposure ages of 19 boulders from the crests of these moraines, combined with the field evidence, are correlated to episodes of moraine stabilisation, Pleistocene surface weathering, and glacial overriding. The last deglaciation event dominates the exposure ages, with 10Be and 26Al data derived from 15 moraine boulders indicating regional deglaciation 9600 ± 200 yr ago. This is the most robust numerical age for the final deglaciation of the Fennoscandian ice sheet. The older apparent exposure ages of the remaining boulders (14,600-26,400 yr) can be explained by cosmogenic nuclide inheritance from previous exposure of the moraine crests during the last glacial cycle. Their potential exposure history, based on local glacial chronologies, indicates that the current moraine morphologies formed at the latest during marine oxygen isotope stage 5. Although numerous deglaciation ages were obtained, this study demonstrates that numerical ages need to be treated with caution and assessed in light of the geomorphological evidence indicating moraines are not necessarily formed by the event that dominates the cosmogenic nuclide data. 相似文献
84.
Peter W. Webley Kenneson Dean John E. Bailey Jon Dehn Rorik Peterson 《Natural Hazards》2009,51(2):345-361
There are over 100 active volcanoes in the North Pacific (NOPAC) region, most of which are located in sparsely populated areas. Dispersion models play an important role in forecasting the movement of volcanic ash clouds by complementing both remote sensing data and visual observations from the ground and aircraft. Puff is a three-dimensional dispersion model, primarily designed for forecasting volcanic ash dispersion, used by the Alaska Volcano Observatory and other agencies. Since early 2007, the model is in an automated mode to predict the movement of airborne volcanic ash at multiple elevated alert status volcanoes worldwide to provide immediate information when an eruption occurs. Twelve of the predictions are within the NOPAC region, nine more within the southern section of the Pacific ring of fire and the others are in Europe and the Caribbean. Model forecasts are made for initial ash plumes ranging from 4 to 20 km altitude above sea level and for a 24-h forecast period. This information is made available via the Puff model website. Model results can be displayed in Virtual Globes for three-dimensional visualization. Here, we show operational Puff predictions in two and three-dimensions in Google Earth®, both as iso-surfaces and particles, and study past eruptions to illustrate the capabilities that the Virtual Globes can provide. In addition, we show the opportunity that Google Maps® provides in displaying Puff operational predictions via an application programming web interface and how radiosonde data (vertical soundings) and numerical weather prediction vertical profiles can be displayed in Virtual Globes for assisting in estimating ash cloud heights. 相似文献
85.
Both linear and nonlinear calculations of the 331 day, long period variable star Mira have been undertaken to see what radial pulsation mode is naturally selected. Models are similar to those considered in the linear nonadiabatic stellar pulsation study of Ostlie and Cox (1986). Models are considered with masses near one solar mass, luminosities between 4000 and 5000 solar luminosities, and effective temperatures of approximately 3000 K. These models have fundamental mode periods that closely match the pulsation period of Mira. The equation of state for the stellar material is given by the Stellingwerf (1975ab) procedure, and the opacity is obtained from a fit by Cahn that matches the low temperature molecular absorption data for the Population I Ross-Aller 1 mixture calculated from the Los Alamos Astrophysical Opacity Library. For the linear study, the Cox, Brownlee, and Eilers (1966) approximation is used for the linear theory variation of the convection luminosity. For the nonlinear work, the method described by Ostlie (1990) and Cox (1990) is followed. Results showing internal details of the radial fundamental and first overtone modes behavior in linear theory are presented. Preliminary radial fundamental mode nonlinear calculations are discussed. The very tentative conclusion is that neither the fundamental or first overtone mode is excluded from being the actual observed one. 相似文献
86.
Jon D. Pelletier Helena Mitasova Russell S. Harmon Margery Overton 《地球表面变化过程与地形》2009,34(9):1245-1254
Changes in vegetation cover within dune fields can play a major role in how dune fields evolve. To better understand the linkage between dune field evolution and interdune vegetation changes, we modified Werner's (Geology, 23, 1995: 1107–1110) dune field evolution model to account for the stabilizing effects of vegetation. Model results indicate that changes in the density of interdune vegetation strongly influence subsequent trends in the height and area of eolian dunes. We applied the model to interpreting the recent evolution of Jockey's Ridge, North Carolina, where repeat LiDAR surveys and historical aerial photographs and maps provide an unusually detailed record of recent dune field evolution. In the absence of interdune vegetation, the model predicts that dunes at Jockey's Ridge evolve towards taller, more closely‐spaced, barchanoid dunes, with smaller dunes generally migrating faster than larger dunes. Conversely, the establishment of interdune vegetation causes dunes to evolve towards shorter, more widely‐spaced, parabolic forms. These results provide a basis for understanding the increase in dune height at Jockey's Ridge during the early part of the twentieth century, when interdune vegetation was sparse, followed by the decrease in dune height and establishment of parabolic forms from 1953‐present when interdune vegetation density increased. These results provide a conceptual model that may be applicable at other sites with increasing interdune vegetation cover, and they illustrate the power of using numerical modeling to model decadal variations in eolian dune field evolution. We also describe model results designed to test the relative efficacy of alternative strategies for mitigating dune migration and deflation. Installing sand‐trapping fences and/or promoting vegetation growth on the stoss sides of dunes are found to be the most effective strategies for limiting dune advance, but these strategies must be weighed against the desire of many park visitors to maintain the natural state of the dunes. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
87.
Tom Nowicki Barbara Crawford Darren Dyck Jon Carlson Ross McElroy Peter Oshust Herb Helmstaedt 《Lithos》2004,76(1-4):1-27
This paper reviews key characteristics of kimberlites on the Ekati property, NWT, Canada. To date 150 kimberlites have been discovered on the property, five of which are mined for diamonds. The kimberlites intrude Archean basement of the central Slave craton. Numerous Proterozoic diabase dykes intrude the area. The Precambrian rocks are overlain by Quaternary glacial sediments. No Phanerozoic rocks are present. However, mudstone xenoliths and disaggregated sediment within the kimberlites indicate that late-Cretaceous and Tertiary cover (likely <200 m) was present at the time of emplacement. The Ekati kimberlites range in age from 45 to 75 Ma. They are mostly small pipe-like bodies (surface area mostly <3 ha but up to 20 ha) that typically extend to projected depths of 400–600 m below current surface. Pipe morphologies are strongly controlled by joints and faults. The kimberlites consist primarily of variably bedded volcaniclastic kimberlite (VK). This is dominated by juvenile constituents (olivine and lesser kimberlitic ash) and variable amounts of exotic sediment (primarily mud), with minor amounts of xenolithic wall-rock material (generally <5%). Kimberlite types include: mud-rich resedimented VK (mRVK); olivine-rich VK (oVK); sedimentary kimberlite; primary VK (PVK); tuffisitic kimberlite (TK) and magmatic kimberlite (MK). The presence and arrangement of these rock types varies widely. The majority of bodies are dominated by oVK and mRVK, but PVK is prominent in the lower portions of certain kimberlites. TK is rare. MK occurs primarily as precursor dykes but, in a few cases, forms pipe-filling intrusions. The internal geology of the kimberlites ranges from simple single-phase pipes (RVK or MK), to complex bodies with multiple, distinct units of VK. The latter include pipes infilled with steep, irregular VK blocks/wedges and at least one case in which the pipe is occupied by well-defined sub-horizontal VK phases, including a unique, 100-m-thick graded sequence. The whole-rock compositions of VK samples suggest significant loss of kimberlitic fines during eruption followed by variable dilution by surface sediment and concurrent incorporation of kimberlitic ash. Diamond distribution within the kimberlites reflects the amount and nature of mantle material sampled by individual kimberlite phases, but is modified considerably by eruption and depositional processes. The characteristics of the Ekati kimberlites are consistent with a two-stage emplacement process: (1) explosive eruption/s causing vent clearing followed by formation of a significant tephra rim/cone of highly fragmented, olivine-enriched juvenile material with varying amounts of kimberlitic ash and surface sediments (predominantly mud); and (2) infilling of the vent by direct deposition from the eruption column and/or resedimentation of crater rim materials. The presence of less fragmented, juvenile-rich PVK in the lower portions of certain pipes and the intrusion of large volumes of MK to shallow levels in some bodies suggest emplacement of relatively volatile-depleted, less explosive kimberlite in the later stages of pipe formation and/or filling. Explosive devolatilisation of CO2-rich kimberlite magma is interpreted to have been the dominant eruption mechanism, but phreatomagmatism is thought to have played a role and, in certain cases, may have been dominant. 相似文献
88.
This paper focuses on a small back-barrier sand-island on the southeast coast of Queensland. The freshwater lens in the study area exhibits anomalously high short-range salinity gradients at shallow depths, which cannot be explained using a standard seawater intrusion model. The island groundwater system consists of two aquifers: a semiconfined aquifer hosting saline to hypersaline groundwater and an overlying unconfined freshwater aquifer. The deeper aquifer is semiconfined within an incised paleovalley, and groundwater flow is restricted to an east – west direction. Tidal response observations show that the tidal signal propagates far more rapidly and is of much higher magnitude in the semiconfined aquifer than the unconfined aquifer. The tidal wave-pulse amplitude is also subject to greater attenuation in the unconfined aquifer. A conceptual hydrogeological model illustrates how upwelling of hypersaline groundwater, induced by density-dependent flow and tidal pumping, has contaminated the shallow groundwater resource. Salinisation at shallow depths is restricted to an area proximal to the paleovalley aquifer. The spatial distribution of lithological heterogeneity is an initial limiting control on the movement of the upwelling saline plume. The extent of shallow groundwater contamination is also limited by the presence of a baroclinic field, resulting from lateral variations in fluid density. Hydrochemical signatures have been used to support the model hypothesis and link the salinisation of fresh groundwater with the semiconfined aquifer as opposed to the surrounding estuarine surface water. The geometry and thickness of the freshwater lens are further controlled by the presence of the largely impermeable bedrock paleosurface between 9 and 12 m depth. The combination of hypersaline groundwater and hydraulically restrictive lithology at shallow depths has produced excessive thinning of the freshwater lens, demonstrating that the application of a model such as the Dupuit – Ghyben – Herzberg relationship would grossly overestimate the available groundwater resource. 相似文献
89.
Cox R Lowe DR 《Journal of sedimentary research. Section A, Sedimentary petrology and processes : an international journal of SEPM (Society for Sedimentary Geology)》1996,66(3):548-558
Most studies of sandstone provenance involve modal analysis of framework grains using techniques that exclude the fine-grained breakdown products of labile mineral grains and rock fragments, usually termed secondary matrix or pseudomatrix. However, the data presented here demonstrate that, when the proportion of pseudomatrix in a sandstone exceeds 10%, standard petrographic analysis can lead to incorrect provenance interpretation. Petrographic schemes for provenance analysis such as QFL and QFR should not therefore be applied to sandstones containing more than 10% secondary matrix. Pseudomatrix is commonly abundant in sandstones, and this is therefore a problem for provenance analysis. The difficulty can be alleviated by the use of whole-rock chemistry in addition to petrographic analysis. Combination of chemical and point-count data permits the construction of normative compositions that approximate original framework grain compositions. Provenance analysis is also complicated in many cases by fundamental compositional alteration during weathering and transport. Many sandstones, particularly shallow marine deposits, have undergone vigorous reworking, which may destroy unstable mineral grains and rock fragments. In such cases it may not be possible to retrieve provenance information by either petrographic or chemical means. Because of this, pseudomatrix-rich sandstones should be routinely included in chemical-petrological provenance analysis. Because of the many factors, both pre- and post-depositional, that operate to increase the compositional maturity of sandstones, petrologic studies must include a complete inventory of matrix proportions, grain size and sorting parameters, and an assessment of depositional setting. 相似文献
90.
Macrofaunal Spatial Patterns in Relationship to Environmental Variables in the Richibucto Estuary,New Brunswick,Canada 总被引:1,自引:0,他引:1
Estuarine macrobenthos respond to a variety of environmental gradients such as sediment type and salinity, and organic enrichment.
A relatively new influence, organic loading from suspended bivalve culture, has the potential to alter this response. A study
on soft-bottom macrobenthic communities was carried out in the Richibucto estuary (46°40′N, 64°50′W), New Brunswick, Canada,
with samples collected from 18 stations in late September and early October 2006. The site consisted of a large tidal channel
originating upstream in a small river. The channel was punctuated by bag culture of oysters along its length. A total of 88
species were recorded. The mean values of abundance, species richness, and diversity (H′) of macrofauna were 11,199 ind. m−2 (ranged from 4,371 to 19,930 ind. m−2), 23.4 species grab−1 and 3.29 grab−1, respectively. In general species richness and H′ increased from the upper estuary to the estuarine mouth. Multivariate analyses clearly exhibited the spatial distribution
in community structure, which coincided with the locations along the estuary (the upper, the lower and the mouth), as well
as inside and outside the channel. Species richness and diversity H′ showed strong positive correlations with salinity (21.2–25.2 ppt), and abundance was positively correlated with water depth
(1.0–4.5 m). Abundance and species richness were negatively correlated with both of silt–clay fraction (3.3–24.8%) and sorting
(σI). Species richness was also negatively correlated with organic content (1.9–12.7%). The BIO-ENV analyses identified silt–clay
fraction, σI and salinity as the major environmental variable combination influencing the macrofaunal patterns, and silt–clay fraction
as the single best-correlated variable. 相似文献