首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8469篇
  免费   298篇
  国内免费   97篇
测绘学   213篇
大气科学   592篇
地球物理   1961篇
地质学   3036篇
海洋学   782篇
天文学   1256篇
综合类   19篇
自然地理   1005篇
  2021年   91篇
  2020年   116篇
  2019年   115篇
  2018年   169篇
  2017年   167篇
  2016年   231篇
  2015年   202篇
  2014年   203篇
  2013年   487篇
  2012年   249篇
  2011年   314篇
  2010年   291篇
  2009年   351篇
  2008年   337篇
  2007年   288篇
  2006年   329篇
  2005年   241篇
  2004年   301篇
  2003年   265篇
  2002年   267篇
  2001年   175篇
  2000年   173篇
  1999年   150篇
  1998年   150篇
  1997年   106篇
  1996年   119篇
  1995年   121篇
  1994年   130篇
  1993年   121篇
  1992年   119篇
  1991年   113篇
  1990年   101篇
  1989年   86篇
  1988年   88篇
  1987年   125篇
  1986年   105篇
  1985年   166篇
  1984年   189篇
  1983年   144篇
  1982年   128篇
  1981年   135篇
  1980年   110篇
  1979年   125篇
  1978年   123篇
  1977年   106篇
  1976年   97篇
  1975年   92篇
  1974年   67篇
  1973年   83篇
  1972年   49篇
排序方式: 共有8864条查询结果,搜索用时 15 毫秒
91.
Hydrocarbons are being introduced into the marine environment from a variety of sources including combustion processes, crude oil spills, fuel oil spills, and controlled disposal such as processed ballast water. Even in the relatively clean waters of Alaska hydrocarbons are being released at an alarming rate. The purpose of this study was to determine the optimum conditions for the metabolism of a representative hydrocarbon by Coho Salmon Oncorhynchus kisutch liver microsomes. The product of cyclohexane metabolism in the salmon microsomal system was identified by gas chromatography-mass spectrometry as cyclohexanol. Conditions of the microsome incubation were varied systematically to determine the optimum temperature, pH, and ionic strength for cyclohexanol production. Cyclohexanol was quantified by capillary column gas chromatography. Maximum cyclohexanol formation was achieved at 20°C, a pH of 8·0–8·5 and an ionic strength of 0·026. A linear rate of cyclohexanol formation is seen from 0–60 min of incubation and there is an apparent decrease in the rate from 60–90 min. Poor stability of the microsomal preparation from the species studied was also identified and several stability studies have been undertaken using cyclohexane metabolism as a monitor.  相似文献   
92.
Failure of borehole sources in weathered and fractured crystalline basement aquifers in Malawi in southern Africa has been linked with poor borehole design, mechanical failure and badly sited boreholes. However, recent work in Malawi indicates that demand may now exceed long-term resource potential in some places and that this is also a cause of water point failure. An 11-year climate cycle (including a wet and dry period) necessitates overdraft from groundwater storage during the dry-cycle years before episodic rainfall events in the wetter part of the cycle again recharge the aquifers. Data, particularly groundwater hydrograph data, are sparse, but sufficient to evaluate the long-term renewable groundwater potential for both fractured and weathered basement-aquifer types in each of the 15 management areas in Malawi. The groundwater potential or long-term renewable resource (recharge) is given by the sum of Darcian throughflow and dry-season depletion of storage. Estimated rural demand exceeds the renewable resource in the fractured-rock aquifer in two management units and in the weathered-rock aquifer in two other units. Although there is inherent uncertainty in the water-balance estimates, the likelihood that rural demand is exceeding long-term average recharge in some areas is cause for concern.  相似文献   
93.
The dissolution of opaline silica of diatom tests in sea water   总被引:3,自引:0,他引:3  
Two different series of measurements have been made of the solubilities and rates of solution in sea water of acid-washed siliceous tests of the diatomsThalassiosira decipiens andRhizosolenia hebetata. The kinetic approach was carried out on the assumption that the tests behave as identical solid spheres. If the tests were present in considerable excess over that required for saturation of the water with respect to silica, the dissolution obeyed first order reaction kinetics and its rate was proportional to the surface area of the exposed tests. When the tests were not in excess the kinetics of dissolution appeared to be more complex. This was considered to be due to a decrease in specific surface area as dissolution proceeded. An expression developed to allow for the change of surface area as a sphere dissolves offers a partial explanation of the kinetics when the tests are not present in excess.  相似文献   
94.
Seafloor geomorphology and surficial stratigraphy of the New Jersey middle continental shelf provide a detailed record of sea-level change during the last advance and retreat of the Laurentide ice sheet (120 kyr B.P. to Present). A NW–SE-oriented corridor on the middle shelf between water depths of 40 m (the mid-shelf “paleo-shore”) and 100 m (the Franklin “paleo-shore”) encompasses 500 line-km of 2D Huntec boomer profiles (500–3500 Hz), an embedded 4.6 km2 3D volume, and a 490 km2 swath bathymetry map. We use these data to develop a relative stratigraphy. Core samples from published studies also provide some chronological and sedimentological constraints on the upper <5 m of the stratigraphic succession.The following stratigraphic units and surfaces occur (from bottom to top): (1) “R”, a high-amplitude reflection that separates sediment >46.5 kyr old (by AMS 14C dating) from overlying sediment wedges; (2) the outer shelf wedge, a marine unit up to 50 m thick that onlaps “R”; (3) “Channels”, a reflection sub-parallel to the seafloor that incises “R”, and appears as a dendritic system of channels in map view; (4) “Channels” fill, the upper portion of which is sampled and known to represent deepening-upward marine sediments 12.3 kyr in age; (5) the “T” horizon, a seismically discontinuous surface that caps “Channels” fill; (6) oblique ridge deposits, coarse-grained shelly units comprised of km-scale, shallow shelf bedforms; and (7) ribbon-floored swales, bathymetric depressions parallel to modern shelf currents that truncate the oblique ridges and cut into surficial deposits.We interpret this succession of features in light of a global eustatic sea-level curve and the consequent migration of the coastline across the middle shelf during the last 120 kyr. The morphology of the New Jersey middle shelf shows a discrete sequence of stratigraphic elements, and reflects the pulsed episodicity of the last sea-level cycle. “R” is a complicated marine/non-marine erosional surface formed during the last regression, while the outer shelf wedge represents a shelf wedge emplaced during a minor glacial retreat before maximum Wisconsin lowstand (i.e., marine oxygen isotope stage 3.1). “Channels” is a widespread fluvial subarial erosion surface formed at the late Wisconsin glacial maximum 22 kyr B.P. The shoreline migrated back across the mid-shelf corridor non-uniformly during the period represented by “Channels” fill. Oblique ridges are relict features on the New Jersey middle shelf, while the ribbon-floored swales represent modern shelf erosion. There is no systematic relationship between modern seafloor morphology and the very shallowly buried stratigraphic succession.  相似文献   
95.
The tolerance of the oligochaete Monopylephorus rubroniveus and the polychaete Streblospio benedicti to sediment-associated fluoranthene was characterized under normoxic (>80% dissolved oxygen saturation) and moderately hypoxic ( approximately 50% dissolved oxygen saturation) conditions. Under both conditions, M. rubroniveus was highly tolerant of fluoranthene. Streblospio benedicti was considerably less tolerant of fluoranthene compared with M. rubroniveus. In addition, S. benedicti was less tolerant to fluoranthene under moderately hypoxic conditions, although no differences in sensitivity between the two oxygen conditions were observed based upon median lethal tissue residues. Bioaccumulation factors were higher for S. benedicti exposed to moderate hypoxia, suggesting that behavioral adaptations to compensate for the lower dissolved oxygen increased its bioaccumulation of fluoranthene. The results of the present laboratory study demonstrate that (1). changes in annelid tolerance to fluoranthene under varying oxygen conditions is a species-dependent phenomenon and (2). the differential tolerance of these two annelids to these combined stressors is consistent with their relative abundances in the field.  相似文献   
96.
97.
Bathynerita naticoidea (Gastropoda: Neritidae) and Methanoaricia dendrobranchiata (Polychaeta: Orbiniidae) are two of the most abundant invertebrates associated with cold‐seep mussel beds in the Gulf of Mexico. At the methane seep known as Brine Pool NR‐1 (27 °43.415 N, 91 °16.756 W; 650 m depth), which is surrounded by a broad band of mussels (Bathymodiolus childressi), these species have distinctly different patterns of abundance, with the gastropod being found mostly at the outer edge of the mussel bed (average density in November 2003: 817 individuals·m−2 in outer zone, 20·m−2 in inner zone) and the polychaete being found almost exclusively near the inner edge (average density in November 2003: 3155 individuals·m−2 in inner zone, 0·m−2 in outer zone), adjacent to the brine pool itself. The salinity of the brine pool exceeds 120, so we hypothesized that M. dendrobranchiata should be more tolerant of high salinities than B. naticoidea. The opposite proved to be true. The gastropods were capable of withstanding salinities at least as high as 85, whereas the polychaetes died at salinities higher than 75. Both species were osmoconformers over the range of salinities (35–75) tested. Behavioral responses of B. naticoidea to salinities of 50, 60, and 70 were investigated in inverted vertical haloclines. Gastropods generally did not enter water of salinity greater than 60, but tolerated short periods at 60. Behavioral avoidance of brine should limit the vertical distribution of B. naticoidea in the inner zone to the top 2.5–5 cm of the mussel bed. Behavior is also a likely (though unproven) mechanism for controlling horizontal distribution of this species across the mussel bed. Methanoaricia dendrobranchiata can tolerate short excursions into the brine, but probably avoids hypersaline conditions by aggregating on the tops of the mussels.  相似文献   
98.
The production and distribution of biological material in wind-driven coastal upwelling systems are of global importance, yet they remain poorly understood. Production is frequently presumed to be proportional to upwelling rate, yet high winds can lead to advective losses from continental shelves, where many species at higher trophic levels reside. An idealized mixed-layer conveyor (MLC) model of biological production from constant upwelling winds demonstrated previously that the amount of new production available to shelf species increased with upwelling at low winds, but declined at high winds [Botsford, L.W., Lawrence, C.A., Dever, E.P., Hastings, A., Largier, J., 2003. Wind strength and biological productivity in upwelling systems: an idealized study. Fisheries Oceanography 12, 245–259]. Here we analyze the response of this model to time-varying winds for parameter values and observed winds from the Wind Events and Shelf Transport (WEST) study region. We compare this response to the conventional view that the results of upwelling are proportional to upwelled volume. Most new production per volume upwelled available to shelf species occurs following rapid increases in shelf transit time due to decreases in wind (i.e. relaxations). However, on synoptic, event time-scales shelf production is positively correlated with upwelling rate. This is primarily due to the effect of synchronous periods of low values in these time series, paradoxically due to wind relaxations. On inter-annual time-scales, computing model production from wind forcing from 20 previous years shows that these synchronous periods of low values have little effect on correlations between upwelling and production. Comparison of model production from 20 years of wind data over a range of shelf widths shows that upwelling rate will predict biological production well only in locations where cross-shelf transit times are greater than the time required for phytoplankton or zooplankton production. For stronger mean winds (narrower shelves), annual production falls below the peak of constant wind prediction [Botsford et al., 2003. Wind strength and biological productivity in upwelling systems: an idealized study. Fisheries Oceanography 12, 245–259], then as winds increase further (shelves become narrower) production does not decline as steeply as the constant wind prediction.  相似文献   
99.
There is a growing body of evidence to suggest that bivalve molluscs routinely ingest zooplankton. To elucidate further these observations, a 15-month study of zooplankton ingestion by farmed mussels was conducted using mussel long-lines in Bantry Bay, Ireland. Stomach content analysis of the mussels showed that there was evidence of zooplankton ingestion throughout the sampling period, but that highest mean numbers of zooplankters were ingested by mussels in the spring and summer months. Various zooplankton species were present in mussel stomachs. Harpacticoid copepods were found more often in stomach contents than calanoid copepods, probably due to their proximity to the bivalves' inhalent siphons. Barnacle cyprids featured in large numbers in stomach contents, but only for a period of 3 months which broadly corresponded with their pelagic phase. Sizes of ingested zooplankton ranged from 126 μm to 6 mm, but more of the smaller zooplankters (e.g. crustacean nauplii) were ingested. When lengths of ingested copepods were compared with those found in plankton net samples, it was found that the net-sampled copepods were significantly larger than those found in mussel stomachs, suggesting that mussels select for smaller categories within the zooplankton available to them. Soft bodied zooplankton was rarely found in mussel stomachs but their absence may be due to rapid digestion or they may have been destroyed in the preservation process. Ingestion of zooplankton by bivalves is discussed in the context of the impacts mussel farms have on resident zooplankton populations.  相似文献   
100.
The loss of beach sand from berm and dune due to high waves and surge is a universal phenomenon associated with sporadic storm activities. To protect the development in a coastal hazard zone, hard structures or coastal setback have been established in many countries around the world. In this paper, the requirement of a storm beach buffer, being a lesser extent landward comparing with the coastal setback to ensure the safety of infrastructures, is numerically assessed using the SBEACH model for three categories of wave conditions in terms of storm return period, median sand grain size, berm width, and design water level. Two of the key outputs from the numerical calculations, berm retreat and bar formation offshore, are then analysed, as well as beach profile change. After having performed a series of numerical studies on selected large wave tank (LWT) test results with monochromatic waves using SBEACH, we may conclude that: (1) Berm erosion increases and submerged bar develops further offshore as the storm return period increases for beach with a specific sand grain size, or as the sand grain reduces on a beach under the action of identical wave condition; (2) Higher storm waves yield a large bar to form quicker and subsequently cause wave breaking on the bar crest, which can reduce the wave energy and limit the extent of the eroding berm; (3) A larger buffer width is required for a beach comprising small sand grain, in order to effectively absorb storm wave energy; and (4) Empirical relationships can be tentatively proposed to estimate the storm beach buffer width, from the input of wave conditions and sediment grain size. These results would benefit a beach nourishment project for shore protection or design of a recreational beach.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号