首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8324篇
  免费   290篇
  国内免费   96篇
测绘学   202篇
大气科学   568篇
地球物理   1956篇
地质学   2994篇
海洋学   753篇
天文学   1224篇
综合类   19篇
自然地理   994篇
  2021年   89篇
  2020年   114篇
  2019年   115篇
  2018年   167篇
  2017年   165篇
  2016年   228篇
  2015年   195篇
  2014年   198篇
  2013年   474篇
  2012年   253篇
  2011年   309篇
  2010年   285篇
  2009年   340篇
  2008年   321篇
  2007年   281篇
  2006年   315篇
  2005年   244篇
  2004年   293篇
  2003年   265篇
  2002年   267篇
  2001年   175篇
  2000年   175篇
  1999年   142篇
  1998年   147篇
  1997年   107篇
  1996年   116篇
  1995年   117篇
  1994年   128篇
  1993年   113篇
  1992年   113篇
  1991年   110篇
  1990年   101篇
  1989年   85篇
  1988年   87篇
  1987年   122篇
  1986年   100篇
  1985年   165篇
  1984年   189篇
  1983年   144篇
  1982年   127篇
  1981年   131篇
  1980年   108篇
  1979年   124篇
  1978年   118篇
  1977年   104篇
  1976年   97篇
  1975年   92篇
  1974年   69篇
  1973年   84篇
  1972年   50篇
排序方式: 共有8710条查询结果,搜索用时 15 毫秒
81.
Two widely-used techniques to estimate the volume of remaining oil and gas resources are discovery process modeling and geologic assessment. Both were used in a recent national assessment of oil and gas resources of the United States. Parallel estimates were obtained for 27 provinces. Geological-based estimates can typically see into areas not available to discovery process models (that is areas with little or no exploration history) and thus, on average, yield higher estimates. However, a linear relation does exist between the mean estimates obtained from these two methods. In addition, other variables were found in a multiple regression model that explained much of the difference. Thus, it is possible to perform discovery process modeling and adjust the estimates to yield results that might be expected from geological-based assessments.  相似文献   
82.
83.
A model of the time dependent relationship between productivity and light intensity following changes in light intensity is briefly described. The model incorporates two response timescales simulating initial response and photoinhibition, although additional timescales could easily be incorporated. The model is calibrated against one set of time dependent data, and applied to two simple models of motion in the upper mixed layer of a lake. The two models are: organised motion simulating Langmuir cells, and disorganised motion simulating the turbulent velocity field associated with surface wind stirring. The depth and therefore light histories for a number of photosynthesising particles are calculated by these models, and used by the productivity model to calculate mean productivities. The results show that the influence of the time dependent nature of the productivity relationship depends on the ratio of the mixed layer depth to the euphotic depth, and to a less extent, on the rate at which the particles circulate in the mixed layer.  相似文献   
84.
Twelve common bivalve larvae occurring in the plankton from the Bay of Islands (35°15'S, 174°10'E), Wellington Harbour (41°16'S, 174°51'E), and off Raumati Beach (40°56'S, 174°58'E), New Zealand, during 1970–72 are described and, wherever possible, provisionally identified. The seasonal occurrences of these larvae in the plankton are also described. Information on the spawning cycles of some New Zealand adult bivalves is reviewed; although some species have a short (4 months or less) spawning season, for most it is much longer, possibly with ‘trickle’ spawning through several months of the year.  相似文献   
85.
A total of 268 thermal spring samples were analyzed for total soluble As using reduced molybdenum-blue; 27 of these samples were also analyzed for total Sb using flame atomic absorption spectrometry. At Yellowstone the ClAs atomic ratio is nearly constant among neutral-alkaline springs with Cl > 100 mg L?1, and within restricted geographic areas, indicating no differential effects of adiabatic vs. conductive cooling on arsenic. The ClAs ratio increases with silica and decreases with decreasing ClΣCO3; the latter relationship is best exemplified for springs along the extensively sampled SE-NW trend within the Lone Star-Upper-Midway Basin region. The relationship between ClAs and ClΣCO3 at Yellowstone suggests a possible rock leaching rather than magmatic origin for much of the Park's total As flux. Condensed vapor springs are low in both As and Cl. Very high ClAs ratios ( > 1000) are associated exclusively with highly diluted (Cl < 100 mg L?1) mixed springs in the Norris and Shoshone Basins and in the Upper White Creek and Firehole Lake areas of Lower Basin. The high ratios are associated with acidity and/or oxygen and iron; they indicate precipitation of As following massive dilution of the Asbearing high-Cl parent water.Yellowstone Sb ranged from 0.009 at Mammoth to 0.166 mg L?1 at Joseph's Coat Spring. Within basins, the ClSb ratio increases as the ClΣCO3 ratio decreases, in marked contrast to As. Mixed springs also have elevated ClSb ratios. White (1967) and Weissberg (1969) previously reported stibnite (Sb2S3), but not orpiment (As2S3), precipitating in the near surface zone of alkaline geothermal systems.  相似文献   
86.
A steep escarpment edge, deep gorges and distinct knickzones in river profiles characterize the landscape on the Western Escarpment of the Andes between ~5°S and ~18°S (northern Peru to northern Chile). Strong north–south and east–west precipitation gradients are exploited in order to determine how climate affects denudation rates in three river basins spanning an otherwise relatively uniform geologic and geomorphologic setting. Late Miocene tectonics uplifted the Meseta/Altiplano plateau (~3000 m a.s.l.), which is underlain by a series of Tertiary volcanic‐volcanoclastic rocks. Streams on this plateau remain graded to the Late Miocene base level. Below the rim of the Meseta, streams have responded to this ramp uplift by incising deeply into fractured Mesozoic rocks via a series of steep, headward retreating knickzones that grade to the present‐day base level defined by the Pacific Ocean. It is found that the Tertiary units on the plateau function as cap‐rocks, which aid in the parallel retreat of the sharp escarpment edge and upper knickzone tips. 10Be‐derived catchment denudation rates of the Rio Piura (5°S), Rio Pisco (13°S) and Rio Lluta (18°S) average ~10 mm ky?1 on the Meseta/Altiplano, irrespective of precipitation rates; whereas, downstream of the escarpment edge, denudation rates range from 10 mm ky?1 to 250 mm ky?1 and correlate positively with precipitation rates, but show no strong correlation with hillslope angles or channel steepness. These relationships are explained by the presence of a cap‐rock and climate‐driven fluvial incision that steepens hillslopes to near‐threshold conditions. Since escarpment retreat and the precipitation pattern were established at least in the Miocene, it is speculated that the present‐day distribution of morphology and denudation rates has probably remained largely unchanged during the past several millions of years as the knickzones have propagated headward into the plateau. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
87.
A three-dimensional finite volume unstructured mesh model of the west coast of Britain, with high resolution in the coastal regions, is used to investigate the role of wind wave turbulence and wind and tide forced currents in producing maximum bed stress in the eastern Irish Sea. The spatial distribution of the maximum bed stress, which is important in sediment transport problems, is determined, together with how it is modified by the direction of wind forced currents, tide–surge interaction and a surface source of wind wave turbulence associated with wave breaking. Initial calculations show that to first order the distribution of maximum bed stress is determined by the tide. However, since maximum sediment transport occurs at times of episodic events, such as storm surges, their effects upon maximum bed stresses are examined for the case of strong northerly, southerly and westerly wind forcing. Calculations show that due to tide–surge interaction both the tidal distribution and the surge are modified by non-linear effects. Consequently, the magnitude and spatial distribution of maximum bed stress during major wind events depends upon wind direction. In addition calculations show that a surface source of turbulence due to wind wave breaking in shallow water can influence the maximum bed stress. In turn, this influences the wind forced flow and hence the movement of suspended sediment. Calculations of the spatial variability of maximum bed stress indicate the level of measurements required for model validation.  相似文献   
88.
An improved seismic hazard model for use in performance‐based earthquake engineering is presented. The model is an improved approximation from the so‐called ‘power law’ model, which is linear in log–log space. The mathematics of the model and uncertainty incorporation is briefly discussed. Various means of fitting the approximation to hazard data derived from probabilistic seismic hazard analysis are discussed, including the limitations of the model. Based on these ‘exact’ hazard data for major centres in New Zealand, the parameters for the proposed model are calibrated. To illustrate the significance of the proposed model, a performance‐based assessment is conducted on a typical bridge, via probabilistic seismic demand analysis. The new hazard model is compared to the current power law relationship to illustrate its effects on the risk assessment. The propagation of epistemic uncertainty in the seismic hazard is also considered. To allow further use of the model in conceptual calculations, a semi‐analytical method is proposed to calculate the demand hazard in closed form. For the case study shown, the resulting semi‐analytical closed form solution is shown to be significantly more accurate than the analytical closed‐form solution using the power law hazard model, capturing the ‘exact’ numerical integration solution to within 7% accuracy over the entire range of exceedance rate. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
89.
It has been suggested that during the last glaciation the Innuitian Ice Sheet existed over the eastern Queen Elizabeth Islands. This is based on the pattern of postglacial emergence over this area and the timing of driftwood penetration into the interisland channels. Alternative interpretations of both sets of data raise questions about the presence of the Innuitian Ice Sheet at this time. Field observations on northeastern Ellesmere Island, plus additional data pertaining to the presence of multiple tills and “old” radiometric dates on lacustrine deposits, shelly tills, and raised marine features suggest that the maximum glaciation over this region, equivalent to the Innuitian Ice Sheet, predates the last glaciation, Palaeoclimatic conditions are also discussed in relation to these data. It is suggested that during the last glaciation of the Queen Elizabeth Islands there was a convergent but not coalescent advance of the existing upland ice-fields. This noncontiguous ice cover over the Queen Elizabeth Islands is termed the Franklin Ice Complex. It is suggested that the term Innuitian Ice Sheet be reserved for contiguous older glaciations over this same area.  相似文献   
90.
The giant impact hypothesis is the dominant theory explaining the formation of our Moon. However, the inability to produce an isotopically similar Earth–Moon system with correct angular momentum has cast a shadow on its validity. Computer-generated impacts have been successful in producing virtual systems that possess many of the observed physical properties. However, addressing the isotopic similarities between the Earth and Moon coupled with correct angular momentum has proven to be challenging. Equilibration and evection resonance have been proposed as means of reconciling the models. In the summer of 2013, the Royal Society called a meeting solely to discuss the formation of the Moon. In this meeting, evection resonance and equilibration were both questioned as viable means of removing the deficiencies from giant impact models. The main concerns were that models were multi-staged and too complex. We present here initial impact conditions that produce an isotopically similar Earth–Moon system with correct angular momentum. This is done in a single-staged simulation. The initial parameters are straightforward and the results evolve solely from the impact. This was accomplished by colliding two roughly half-Earth-sized impactors, rotating in approximately the same plane in a high-energy, off-centered impact, where both impactors spin into the collision.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号