首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46042篇
  免费   1045篇
  国内免费   328篇
测绘学   931篇
大气科学   3085篇
地球物理   9338篇
地质学   16747篇
海洋学   4200篇
天文学   9782篇
综合类   106篇
自然地理   3226篇
  2022年   292篇
  2021年   519篇
  2020年   599篇
  2019年   678篇
  2018年   1166篇
  2017年   1162篇
  2016年   1283篇
  2015年   755篇
  2014年   1210篇
  2013年   2273篇
  2012年   1415篇
  2011年   1899篇
  2010年   1696篇
  2009年   2085篇
  2008年   1915篇
  2007年   1934篇
  2006年   1828篇
  2005年   1272篇
  2004年   1328篇
  2003年   1338篇
  2002年   1223篇
  2001年   1018篇
  2000年   955篇
  1999年   852篇
  1998年   841篇
  1997年   815篇
  1996年   682篇
  1995年   671篇
  1994年   619篇
  1993年   557篇
  1992年   512篇
  1991年   521篇
  1990年   526篇
  1989年   467篇
  1988年   450篇
  1987年   513篇
  1986年   508篇
  1985年   657篇
  1984年   715篇
  1983年   673篇
  1982年   612篇
  1981年   575篇
  1980年   517篇
  1979年   518篇
  1978年   487篇
  1977年   475篇
  1976年   432篇
  1975年   437篇
  1974年   396篇
  1973年   445篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
681.
Boulder 1, Station 2, Apollo 17 is a stratified boulder containing dark clasts and dark-rimmed light clasts set in a light-gray friable matrix. The gray to black clasts (GCBx and BCBx) are multigenerational, competent, high-grade metamorphic, and partially melted breccias. They contain a diverse suite of lithic clasts which are mainly ANT varieties, but include granites, basaltic-textured olivine basalts, troctolitic and spinel troctolitic basalts, and unusual lithologies such as KREEP norite, ilmenite (KREEP) microgabbro, and the Civet Cat norite, which is believed to be a plutonic differentiate. The GCBxs and BCBxs are variable in composition, averaging a moderately KREEPy olivine norite. The matrix consists of mineral fragments derived from the observed lithologies plus variable amounts of a component, unobserved as a clast-type, that approximates a KREEP basalt in composition, as well as mineral fragments of unknown derivation. The high-temperature GCBxs cooled substantially before their incorporation into the friable matrix of Boulder 1. The light friable matrix (LFBx) is texturally distinct from the competent breccia clasts and, apart from the abundant ANT clasts, contains clasts of a KREEPy basalt that is not observed in the competent breccias. The LFBx lacks such lithologies as the granites and the Civet Cat norite observed in the competent breccias and in detail is a distinct chemical as well as textural entity. We interpret the LFBx matrix as Serenitatis ejecta deposited in the South Massif, and the GCBx clasts as remnants of an ejecta blanket produced by an earlier impact. The source terrain for the Serenitatis impact consisted of the competent breccias, crustal ANT lithologies, and the KREEPy basalts, attesting to substantial lunar activity prior to the impact. The age of the older breccias suggests that the Serenitatis event is younger than 4.01±0.03 b.y.  相似文献   
682.
683.
684.
A synthesis of previous results, which we dub the “standard model,” provides a prediction as to how isotope fractionation during sulfate reduction should respond to physiological variables such as specific rate of sulfate reduction and environmental variables such as substrate availability and temperature. The standard model suggests that isotope fractionation should decrease with increasing specific rates of sulfate reduction (rate per cell). Furthermore, the standard model predicts that low fractionations should be found at both high and low temperatures whereas the highest fractionations should be found in the intermediate temperature range. These fractionation trends are controlled, as a function of temperature, by the balance between the transfer rates of sulfate into and out of the cell and the exchange between the sulfur pools internal to the organism. We test this standard model by conducting experiments on the growth physiology and isotope fractionation, as a function of temperature, by the sulfate-reducing bacterium Desulfovibrio desulfuricans (DSMZ 642). Our results contrast with the “standard model” by showing a positive correlation between specific rates of sulfate reduction and fractionation. Also by contrast with the standard model, we found the highest fractionations at low and high temperatures and the lowest fractionations in the intermediate temperature range. We develop a fractionation model which can be used to explain both our results as well as the results of the “standard model.” Differences in fractionation with temperature relate to differences in the specific temperature response of internal enzyme kinetics as well as the exchange rates of sulfate in and out of the cell. It is expected that the kinetics of these processes will show strain-specific differences.  相似文献   
685.
A detailed geochemical and microbiological study of a ∼2 m sediment core from the inactive Alvin mounds within the TAG hydrothermal field was conducted to examine, for the first time, the role of prokaryotes in subsurface weathering of hydrothermal sediments. Results show that there has been substantial post-depositional remobilisation of metal species and diagenetic overprinting of the original high-temperature hydrothermal minerals, and aspects have involved prokaryotic processes. Prokaryotic enumeration demonstrates the presence of a population smaller than the average for deep sea sediments, probably due to the low organic carbon content, but not inhibited by (and hence adapted to) the metal rich environment. There was a small but significant increase in population size associated with the active redox boundary in an upper metal sulphide layer (50-70 cm) around which active metal remobilisation was concentrated (Cu, Au, Cd, Ag, U, Zn and Zn). Hence, subsurface prokaryotes were potentially obtaining energy from metal metabolism in this near surface zone. Close association of numbers of culturable Mn and Fe reducing prokaryotes with subsurface Fe2+ and Mn2+ pore water profiles suggested active prokaryotic metal reduction at depth in core CD102/43 (to ∼175 cm). In addition, a prokaryotic mechanism, which is associated with bacterial sulphate reduction, is invoked to explain the U enrichment on pyrite surfaces and Zn and Pb remobilisation in the upper sediment. Although prokaryotic populations are present throughout this metalliferous sediment, thermodynamic calculations indicated that the inferred low pH of pore waters and the suboxic/anoxic conditions limits the potential energy available from Fe(II) oxidation, which may restrict prokaryotic chemolithotrophic biomass. This suggests that intense prokaryotic Fe oxidation and weathering of seafloor massive sulphide deposits may be restricted to the upper portion of the deposit that is influenced by near neutral pH and oxic seawater unless there is significant subsurface fluid flow.  相似文献   
686.
Coastal upwelling zones support some of the highest rates of primary production in the oceans. The settling and subsequent decomposition of this organic matter promotes oxygen depletion. In the Eastern tropical North and South Pacific and the Arabian Sea, large tracts of anoxic water develop, where intensive N2 production through denitrification and anammox accounts for about 1/3 of the total loss of fixed nitrogen in the marine realm. It is curious that despite extensive denitrification in these waters, complete nitrate removal and the onset of sulfate reduction is extremely rare. A simple box model is constructed here to reproduce the dynamics of carbon, oxygen and nutrient cycling in coastal upwelling zones. The model is constructed with five boxes, where water is exchanged between the boxes by vertical and horizontal mixing and advection. These primary physical drivers control the dynamics of the system. The model demonstrates that in the absence of nitrogen fixation, the anoxic waters in a coastal upwelling system will not become nitrate free. This is because nitrate is the limiting nutrient controlling primary production, and if nitrate concentration becomes too low, primary production rate drops and this reduces rates of nitrate removal through N2 production. With nitrogen fixation, however, complete nitrate depletion can occur and sulfate reduction will ensue. This situation is extremely rare in coastal upwelling zones, probably because nitrogen-fixing bacteria do not prosper in the high nutrient, turbid waters as typically in these areas. Finally, it is predicted here that the chemistry of the upwelling system will develop in a similar matter regardless whether N2 production is dominated by anaerobic ammonium oxidation (anammox) or canonical heterotrophic denitrification.  相似文献   
687.
The fractionation of sulfur isotopes by the thermophilic chemolithoautotrophic Thermodesulfatator indicus was explored during sulfate reduction under excess and reduced hydrogen supply, and the full temperature range of growth (40-80 °C). Fractionation of sulfur isotopes measured under reduced H2 conditions in a fed-batch culture revealed high fractionations (24-37‰) compared to fractionations produced under excess H2 supply (1-6‰). Higher fractionations correlated with lower sulfate reduction rates. Such high fractionations have never been reported for growth on H2. For temperature-dependant fractionation experiments cell-specific rates of sulfate reduction increased with increasing temperatures to 70 °C after which sulfate-reduction rates rapidly decreased. Fractionations were relatively high at 40 °C and decreased with increasing temperature from 40-60 °C. Above 60 °C, fractionation trends switched and increased again with increasing temperatures. These temperature-dependant fractionation trends have not previously been reported for growth on H2 and are not predicted by a generally accepted fractionation model for sulfate reduction, where fractionations are controlled as a function of temperature, by the balance of the exchange of sulfate across the cell membrane, and enzymatic reduction rates of sulfate. Our results are reproduced with a model where fractionation is controlled by differences in the temperature response of enzyme reaction rates and the exchange of sulfate in and out of the cell.  相似文献   
688.
This study aimed at quantifying the total organic carbon (TOC) present in soils within the proximity of the Kgwakgwe Mn oxide ore abandoned mine, Botswana, and establish its relationship with Mn concentrations in soils and vegetation based on multivariate and Geographical Information Systems (GIS) analytical techniques. Four hundred soil samples and 200 vegetation set samples were obtained from a 4 km2 area close to the abandoned mine. The TOC in soil samples were determined using a carbon/hydrogen/moisture determinator, and Mn concentrations in soils and vegetation by atomic absorption spectrophotometry. Results were processed using the statistical package for social science (SPSS), GIS, and Remote Sensing (RS) techniques with the Integrated Land and Water Information System (ILWIS), Geosoft Oasis Montaj and ArcGIS software packages. The values for TOC in the soil samples from the study area ranged from 0 wt % to 7.91 wt %, with a mean of 1.90 wt %, and at the control area, from 4.07 wt % to 4.86 wt %. The range of concentrations of Mn in soils was from 36 mg/g to 24908 mg/g and for Mn concentrations in the vegetation samples from 26 mg/g to 3611 mg/g with a mean of 598 mg/g. Results of correlation coefficients depicted very weak negative association except Mn in soils/Mn in leaves which was weak but positive. The statistical data yielded four clusters as follows: cluster one consisted mainly of Mn in leaves, cluster two was constituted of Mn in soils, and cluster four had TOC. Cluster three was dominated by the three parameters but with negative t statistic. The spatial presentation of data presented revealed little or no vegetation in the south eastern area and those close to the mine workings, and some significant vegetation in the north western part of the study area. The low TOC in the soils is associated to low vegetation cover which is considered to have been influenced by the soil clay fraction mineralogy and high concentrations of Mn.  相似文献   
689.
Chemically enhanced wastewater treatment is attracting substantial interest among the currently employed chemical unit processes in wastewater treatment. Coagulation-flocculation has received considerable attention for yielding high pollutant removal, especially color removal. This investigation presents a novel formulation of coagulation-flocculation for color removal from industrial wastewater and illustrates its efficiency, with aid of measurement of solid sludge content, suspended solid content, percentage of solid recovery, UV absorption in wastewater effluent from two automotive factories. The results show that the novel formulation can remove color content from wastewater efficiently. The treated wastewater had UV absorption close to distillated water and color was removed up to 96% by flocculation / coagulation treatment.  相似文献   
690.
Efficient treatment strategies to reduce the toxicity of metal contaminated soil using cost effective techniques such as naturally available ameliorants and industrial waste have emerged. Three easily available amendments were determined: Bone meal, red earth/mud and pulverised fly ash (PFA). The application of ameliorants offered a possible alternative in situ remediation of contaminated sites without disruption to the ecosystem profile. In comparison to other ameliorants Red earth/mud was found to be efficient in intercepting lead leaching from soil amended with different lead compounds based on CEC (Cmol/g). This was associated with the heterogeneous adsorbency principle in red mud which is associated with its ability to bind metal ions (M2+) onto one or two types of surface sites at pH< 6.0. However areas that need to be studied and assessed (for public health concerns) critically for wide spread application of all the ameliorants include off-site effects of the ameliorants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号