首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9785篇
  免费   401篇
  国内免费   113篇
测绘学   236篇
大气科学   684篇
地球物理   2380篇
地质学   3495篇
海洋学   901篇
天文学   1473篇
综合类   25篇
自然地理   1105篇
  2021年   104篇
  2020年   134篇
  2019年   136篇
  2018年   204篇
  2017年   192篇
  2016年   279篇
  2015年   229篇
  2014年   236篇
  2013年   545篇
  2012年   288篇
  2011年   362篇
  2010年   355篇
  2009年   411篇
  2008年   380篇
  2007年   360篇
  2006年   368篇
  2005年   285篇
  2004年   337篇
  2003年   311篇
  2002年   311篇
  2001年   197篇
  2000年   203篇
  1999年   168篇
  1998年   167篇
  1997年   130篇
  1996年   136篇
  1995年   143篇
  1994年   158篇
  1993年   125篇
  1992年   140篇
  1991年   135篇
  1990年   136篇
  1989年   109篇
  1988年   107篇
  1987年   135篇
  1986年   117篇
  1985年   189篇
  1984年   218篇
  1983年   169篇
  1982年   144篇
  1981年   158篇
  1980年   125篇
  1979年   144篇
  1978年   138篇
  1977年   118篇
  1976年   108篇
  1975年   103篇
  1974年   78篇
  1973年   98篇
  1972年   60篇
排序方式: 共有10000条查询结果,搜索用时 375 毫秒
311.
A Permian (~265 Ma) intrusive complex which formed as a magmatic feeder reservoir to an immature island-arc volcano is fortuitously exposed in southern New Zealand. Known as the Greenhills Complex, this intrusion was emplaced at shallow crustal levels and consists of two layered bodies which were later intruded by a variety of dykes. Cumulates, which include dunite, olivine clinopyroxenite, olivine gabbro, and hornblende gabbro-norite, are related products of parent-magma fractionation. Both primary (magmatic) and secondary platinum-group minerals occur within dunite at one locality. Using the composition of cumulus minerals, mafic dykes and melt inclusions, we have determined that the parent magmas of the complex were hydrous, low-K island-arc tholeiites of ankaramitic affinities. Progressive magmatic differentiation of this parent magma generated fractionated melt of high-alumina basalt composition which is now preserved only as dykes which cut the Complex. Field evidence and cumulus mineral profiles reveal that the magma chambers experienced turbulent magmatic conditions during cumulate-rock formation. Recharge of the chambers by primitive magma is likely to have coincided with eruption of residual melt at the surface. Similar processes are inferred to account for volcanic-rock compositions in other parts of this arc terrane and in modern island-arc systems.  相似文献   
312.
In the Yangtze Block (South China), a well-developed Mesozoic thrust system extends through the Xuefeng and Wuling mountains in the southeast to the Sichuan basin in the northwest. The system comprises both thin- and thick-skinned thrust units separated by a boundary detachment fault, the Dayin fault. To the northwest, the thin-skinned belt is characterized by either chevron anticlines and box synclines to the northwest or chevron synclines to the southeast. The former structural style displays narrow exposures for the cores of anticlines and wider exposures for the cores of synclines. Thrust detachments occur along Silurian (Fs) and Lower Cambrian (Fc) strata and are dominantly associated with the anticlines. To the southeast, this style of deformation passes gradually into one characterized by chevron synclines with associated principal detachment faults along Silurian (Fs), Cambrian (Fc) and Lower Sinian (Fz) strata. There are, however, numerous secondary back thrusts. Therefore, the thin-skinned belt is like the Valley and Ridge Province of the North American Applachian Mountains. The thick-skinned belt structurally overlies the thin-skinned belt and is characterized by a number of klippen including the Xuefeng and Wuling nappes. It is thus comparable to the Blue Ridge Province of Appalachia.The structural pattern of this thrust system in South China can be explained by a model involving detachment faulting along various stratigraphic layers at different stages of its evolution. The system was developed through a northwest stepwise progression of deformation with the earliest delamination along Lower Sinian strata (Fz). Analyses of balanced geological cross-sections yield about 18.1–21% (total 88 km) shortening for the thin-skinned unit and at least this amount of shortening for the thick-skinned unit. The compressional deformation from southeast to northwest during Late Jurassic to Cretaceous time occurred after the westward progressive collision of the Yangtze Block with the North China Block and suggests that the orogenic event was intracontinental in nature.  相似文献   
313.
Oblique convergence since the Early Cenozoic between the northward-moving Australian plate, westward-moving Pacific plate and almost stationary Eurasian plate has created a world-ranking tectonic zone in the eastern Indonesia–New Guinea–Southwest Pacific region (Tonga–Sulawesi megashear) that is notorious for its complex mix of tectonic styles and terrane juxtapositions. Unlike an ancient analog—the Mesozoic–Cenozoic Cordillera of North America—palaeomagnetic constraints on terrane motions in the zone are few. To improve the framework of quantitative control on such motions and therefore our understanding of the development of the zone, results of a palaeomagnetic study in the Highlands region of Papua New Guinea (PNG), in the southern part of the New Guinea Orogen, are reported. The study yields new insights into terrane tectonics along the Australian craton's active northern margin and confirms the complexity of block rotations to be expected at the local scale in tectonically intricate zones. The study is based on more than 500 samples (21 localities) collected from an interior and an exterior zone of New Guinea's central cordillera. The two zones are separated by the Tahin and Stolle–Lagaip–Kaugel Fault zones and collectively represent the para-autochthonous northern margin of the Australian craton. Samples from the interior zone, which in the study area comprises a cratonic spur of uncertain—probably displaced—origin, come from Triassic to Miocene sediments and subordinate volcanics of the Kubor Anticline, Jimi Terrane, and Yaveufa Syncline (16 localities) in the central and eastern Highlands. Samples from the exterior zone, which represent a basement-involved, Pliocene foreland fold-and-thrust belt, come from Middle Eocene to Middle Miocene carbonates and clastics (five localities) in the southern Highlands of the Papuan Fold Belt. Results permit us to constrain the tectonic evolution of the two zones palaeomagnetically. Using mainly thermal demagnetization techniques, three main magnetic components have been identified in the collection: (1) a recent field overprint of both normal and reverse polarity; (2) a pervasive overprint of mainly normal polarity that originated during extensive Middle to Late Miocene intrusive activity in the central cordillera; and (3) a primary component which has been identified in only 7 of the 21 localities (5 of 11 stratigraphic units represented in the collection). All components show patterns of rotation that are consistent within the zones, but differ between them. In the interior zone (central and eastern Highlands), large-scale counterclockwise rotations of between 30°+ and 100°+ have been established throughout the Kubor Anticline and Jimi Terrane, with some clockwise rotation present in the southern part of the Yaveufa Syncline. In contrast, in the Mendi area of the exterior zone (southern Highlands), clockwise rotations of between 30°+ and 50°+ can be recognized. These contrasting rotation patterns across the Tahin and Stolle–Lagaip–Kaugel Fault zones indicate decoupling of the two tectonic zones, probably along basement-involved faults. The clockwise rotations in the southern Highlands of the Papuan Fold Belt are to be expected from its structural grain, and are probably governed by regional basement faults and transverse lineaments. In contrast, the pattern of counterclockwise rotations in the Kubor Anticline–Jimi Terrane cratonic spur of the central and eastern Highlands was unexpected. The pattern is interpreted to result from non-rigid rotation of continental terranes as they were transported westward across the northeastern margin of the Australian craton. This margin became reorganised after the Middle Miocene, when the steadily northward-advancing Australian craton impinged into the westward-moving Pacific plate/buffer-plate system. Transpressional reorganisation under the influence of the sinistral Tonga–Sulawesi megashear became enhanced with Mio-Pliocene docking, and subsequent southward overthrusting, of the Finisterre Terrane onto the northeastern margin of the Australian craton.  相似文献   
314.
Whole-rock Pb isotopic signatures and U/Pb geochronology refute a Rodinian correlation of northeastern Laurentia and proto-Andean Amazonia. According to this previously proposed model, the Labrador–Scotland–Greenland Promontory (LSGP) of northeastern Laurentia collided with the proto-Andean margin of Amazonia, at the Arica Embayment, during the Grenville/Sunsás Orogeny (ca. 1.0 Ga). Links between the two margins were based upon the correlation of the LSGP with Arequipa-Antofalla Basement (AAB), a Proterozoic block along the proto-Andean margin of Amazonia adjacent to the Arica Embayment. Specifically, similarities in 1.8–1.0 Ga basement rocks in both regions suggested that the AAB was originally a piece of the LSGP. Furthermore, similarities in unique, post-collisional, but pre-rift, glacial sedimentary sequences also supported a link between the AAB and LSGP.Tests of these apparent similarities fail to support correlation of the AAB and the LSGP and, thus, eliminate a direct link between northeastern Laurentia and southwestern Amazonia in Rodinia. However, Pb isotopic compositions and U/Pb geochronology provide the basis for two new correlations, namely, (1) the ca. 1.3–1.0 Ga basement in the central and southern Appalachians may be an allochthonous block that was transferred to Laurentia from Amazonia at ca. 1.0 Ga, and (2) an allochthonous AAB may be a piece of the Kalahari Craton that was transferred to Amazonia at ca. 1.0 Ga. Based on these new correlations and a previously proposed Grenvillian connection between southern Laurentia (Llano) and Kalahari, we propose that Amazonia may have collided with a contiguous southeastern Laurentia/Kalahari margin at ca. 1.0 Ga.  相似文献   
315.
The microstructure of a quartzite experimentally deformed and partially recrystallised at 900 °C, 1.2 GPa confining pressure and strain rate 10−6/s was investigated using orientation contrast and electron backscatter diffraction (EBSD). Boundaries between misoriented domains (grains or subgrains) were determined by image analysis of orientation contrast images. In each domain, EBSD measurements gave the complete quartz lattice orientation and enabled calculation of misorientation angles across every domain boundary. Results are analysed in terms of the boundary density, which for any range of misorientations is the boundary length for that range divided by image area. This allows a more direct comparison of misorientation statistics between different parts of a sample than does a treatment in terms of boundary number.The strain in the quartzite sample is heterogeneous. A 100×150 μm low-strain partially recrystallised subarea C was compared with a high-strain completely recrystallised subarea E. The density of high-angle (>10°) boundaries in E is roughly double that in C, reflecting the greater degree of recrystallisation. Low-angle boundaries in C and E are produced by subgrain rotation. In the low-angle range 0–10° boundary densities in both C and E show an exponential decrease with increasing misorientation. The densities scale with exp(−θ/λ) where λ is approximately 2° in C and 1° in E; in other words, E has a comparative dearth of boundaries in the 8–10° range. We explain this dearth in terms of mobile high-angle boundaries sweeping through and consuming low-angle boundaries as the latter increase misorientation through time. In E, the density of high-angle boundaries is larger than in C, so this sweeping would have been more efficient and could explain the relative paucity of 8–10° boundaries.The boundary density can be generalised to a directional property that gives the degree of anisotropy of the boundary network and its preferred orientation. Despite the imposed strain, the analysed samples show that boundaries are not, on average, strongly aligned. This is a function of the strong sinuosity of high-angle boundaries, caused by grain boundary migration. Low-angle boundaries might be expected, on average, to be aligned in relation to imposed strain but this is not found.Boundary densities and their generalisation in terms of directional properties provide objective measures of microstructure. In this study the patterns they show are interpreted in terms of combined subgrain rotation and migration recrystallisation, but it may be that other microstructural processes give distinctive patterns when analysed in this fashion.  相似文献   
316.
Low concentrate density from wet drum magnetic separators in dense medium circuits can cause operating difficulties due to inability to obtain the required circulating medium density and, indirectly, high medium solids losses. The literature is almost silent on the processes controlling concentrate density. However, the common name for the region through which concentrate is discharged—the squeeze pan gap—implies that some extrusion process is thought to be at work. There is no model of magnetics recovery in a wet drum magnetic separator, which includes as inputs all significant machine and operating variables.A series of trials, in both factorial experiments and in single variable experiments, was done using a purpose built rig which featured a small industrial scale (700 mm lip length, 900 mm diameter) wet drum magnetic separator. A substantial data set of 191 trials was generated in this work. The results of the factorial experiments were used to identify the variables having a significant effect on magnetics recovery.It is proposed, based both on the experimental observations of the present work and on observations reported in the literature, that the process controlling magnetic separator concentrate density is one of drainage. Such a process should be able to be defined by an initial moisture, a drainage rate and a drainage time, the latter being defined by the volumetric flowrate and the volume within the drainage zone. The magnetics can be characterised by an experimentally derived ultimate drainage moisture. A model based on these concepts and containing adjustable parameters was developed. This model was then fitted to a randomly chosen 80% of the data, and validated by application to the remaining 20%. The model is shown to be a good fit to data over concentrate solids content values from 40% solids to 80% solids and for both magnetite and ferrosilicon feeds.  相似文献   
317.
The modern analog technique typically uses a distance metric to determine the dissimilarity between fossil and modern biological assemblages. Despite this quantitative approach, interpretation of distance metrics is usually qualitative and rules for selection of analogs tend to be ad hoc. We present a statistical tool, the receiver operating characteristic (ROC) curve, which provides a framework for identifying analogs from distance metrics. If modern assemblages are placed into groups (e.g., biomes), this method can (1) evaluate the ability of different distance metrics to distinguish among groups, (2) objectively identify thresholds of the distance metric for determining analogs, and (3) compute a likelihood ratio and a Bayesian probability that a modern group is an analog for an unknown (fossil) assemblage. Applied to a set of 1689 modern pollen assemblages from eastern North America classified into eight biomes, ROC analysis confirmed that the squared-chord distance (SCD) outperforms most other distance metrics. The optimal threshold increased when more dissimilar biomes were compared. The probability of an analog vs no-analog result (a likelihood ratio) increased sharply when SCD decreased below the optimal threshold, indicating a nonlinear relationship between SCD and the probability of analog. Probabilities of analog computed for a postglacial pollen record at Tannersville Bog (Pennsylvania, USA) identified transitions between biomes and periods of no analog.  相似文献   
318.
The desorption of 137Cs+ was investigated on sediments from the United States Hanford site. Pristine sediments and ones that were contaminated by the accidental release of alkaline 137Cs+-containing high level nuclear wastes (HLW, 2 × 106 to 6 × 107 pCi 137Cs+/g) were studied. The desorption of 137Cs+ was measured in Na+, K+, Rb+, and NH4+electrolytes of variable concentration and pH, and in presence of a strong Cs+-specific sorbent (self-assembled monolayer on a mesoporous support, SAMMS). 137Cs+ desorption from the HLW-contaminated Hanford sediments exhibited two distinct phases: an initial instantaneous release followed by a slow kinetic process. The extent of 137Cs+ desorption increased with increasing electrolyte concentration and followed a trend of Rb+ ≥ K+ > Na+ at circumneutral pH. This trend followed the respective selectivities of these cations for the sediment. The extent and rate of 137Cs+ desorption was influenced by surface armoring, intraparticle diffusion, and the collapse of edge-interlayer sites in solutions containing K+, Rb+, or NH4+. Scanning electron microscopic analysis revealed HLW-induced precipitation of secondary aluminosilicates on the edges and basal planes of micaceous minerals that were primary Cs+ sorbents. The removal of these precipitates by acidified ammonium oxalate extraction significantly increased the long-term desorption rate and extent. X-ray microprobe analyses of Cs+-sorbed micas showed that the 137Cs+ distributed not only on mica edges, but also within internal channels parallel to the basal plane, implying intraparticle diffusive migration of 137Cs+. Controlled desorption experiments using Cs+-spiked pristine sediment indicated that the 137Cs+ diffusion rate was fast in Na+-electrolyte, but much slower in the presence of K+ or Rb+, suggesting an effect of edge-interlayer collapse. An intraparticle diffusion model coupled with a two-site cation exchange model was used to interpret the experimental results. Model simulations suggested that about 40% of total sorbed 137Cs+ was exchangeable, including equilibrium and kinetic desorbable pools. At pH 3, this ratio increased to 60-80%. The remainder of the sorbed 137Cs+ was fixed or desorbed at much slower rate than our experiments could detect.  相似文献   
319.
320.
Field investigations at Dugway Proving Ground in western Utah have produced new data on the chronology and human occupation of late Pleistocene and early Holocene lakes, rivers, and wetlands in the Lake Bonneville basin. We have classified paleo-river channels of these ages as “gravel channels” and “sand channels.” Gravel channels are straight to curved, digitate, and have abrupt bulbous ends. They are composed of fine gravel and coarse sand, and are topographically inverted (i.e., they stand higher than the surrounding mudflats). Sand channels are younger and sand filled, with well-developed meander-scroll morphology that is truncated by deflated mudflat surfaces. Gravel channels were formed by a river that originated as overflow from the Sevier basin along the Old River Bed during the late regressive phases of Lake Bonneville (after 12,500 and prior to 11,000 14C yr B.P.). Dated samples from sand channels and associated fluvial overbank and wetland deposits range in age from 11,000 to 8800 14C yr B.P., and are probably related to continued Sevier-basin overflow and to groundwater discharge. Paleoarchaic foragers occupied numerous sites on gravel-channel landforms and adjacent to sand channels in the extensive early Holocene wetland habitats. Reworking of tools and limited toolstone diversity is consistent with theoretical models suggesting Paleoarchaic foragers in the Old River Bed delta were less mobile than elsewhere in the Great Basin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号