全文获取类型
收费全文 | 8286篇 |
免费 | 305篇 |
国内免费 | 88篇 |
专业分类
测绘学 | 200篇 |
大气科学 | 571篇 |
地球物理 | 1934篇 |
地质学 | 2989篇 |
海洋学 | 752篇 |
天文学 | 1223篇 |
综合类 | 22篇 |
自然地理 | 988篇 |
出版年
2021年 | 96篇 |
2020年 | 121篇 |
2019年 | 115篇 |
2018年 | 166篇 |
2017年 | 162篇 |
2016年 | 227篇 |
2015年 | 194篇 |
2014年 | 196篇 |
2013年 | 471篇 |
2012年 | 250篇 |
2011年 | 309篇 |
2010年 | 284篇 |
2009年 | 341篇 |
2008年 | 322篇 |
2007年 | 280篇 |
2006年 | 316篇 |
2005年 | 237篇 |
2004年 | 293篇 |
2003年 | 263篇 |
2002年 | 264篇 |
2001年 | 173篇 |
2000年 | 170篇 |
1999年 | 141篇 |
1998年 | 141篇 |
1997年 | 103篇 |
1996年 | 114篇 |
1995年 | 114篇 |
1994年 | 128篇 |
1993年 | 113篇 |
1992年 | 113篇 |
1991年 | 109篇 |
1990年 | 101篇 |
1989年 | 85篇 |
1988年 | 87篇 |
1987年 | 122篇 |
1986年 | 100篇 |
1985年 | 163篇 |
1984年 | 186篇 |
1983年 | 144篇 |
1982年 | 126篇 |
1981年 | 131篇 |
1980年 | 108篇 |
1979年 | 124篇 |
1978年 | 118篇 |
1977年 | 103篇 |
1976年 | 96篇 |
1975年 | 91篇 |
1974年 | 67篇 |
1973年 | 83篇 |
1972年 | 49篇 |
排序方式: 共有8679条查询结果,搜索用时 15 毫秒
51.
52.
53.
John Inge Svendsen Lars Martin B. Frseth Richard Gyllencreutz Haflidi Haflidason Mona Henriksen Morten N. Hovland
ystein S. Lohne Jan Mangerud Dmitry Nazarov Carl Regnll Joerg M. Schaefer 《Boreas: An International Journal of Quaternary Research》2019,48(2):407-431
Our knowledge about the glaciation history in the Russian Arctic has to a large extent been based on geomorphological mapping supplemented by studies of short stratigraphical sequences found in exposed sections. Here we present new geochronological data from the Polar Ural Mountains along with a high‐resolution sediment record from Bolshoye Shchuchye, the largest and deepest lake in the mountain range. Seismic profiles show that the lake contains a 160‐m‐thick sequence of unconsolidated lacustrine sediments. A well‐dated 24‐m‐long core from the southern end of the lake spans the last 24 cal. ka. From downward extrapolation of sedimentation rates we estimate that sedimentation started about 50–60 ka ago, most likely just after a large glacier had eroded older sediments from the basin. Terrestrial cosmogenic nuclide (TCN) exposure dating (10Be) of boulders and Optically Stimulated Luminescence (OSL) dating of sediments indicate that this part of the Ural Mountains was last covered by a coherent ice‐field complex during Marine Isotope Stage (MIS) 4. A regrowth of the glaciers took place during a late stage of MIS 3, but the central valleys remained ice free until the present. The presence of small‐ and medium‐sized glaciers during MIS 2 is reflected by a sequence of glacial varves and a high sedimentation rate in the lake basin and likewise from 10Be dating of glacial boulders. The maximum extent of the mountain glaciers during MIS 2 was attained prior to 24 cal. ka BP. Some small present‐day glaciers, which are now disappearing completely due to climate warming, were only slightly larger during the Last Glacial Maximum (LGM) as compared to AD 1953. A marked decrease in sedimentation rate around 18–17 cal. ka BP indicates that the glaciers then became smaller and probably disappeared altogether around 15–14 cal. ka BP. 相似文献
54.
Norman K. Grant James L. Powell Flora R. Burkholder John V. Walther Max L. Coleman 《Earth and Planetary Science Letters》1976,31(2):209-223
Strontium and oxygen isotope measurements on the alkali basalt-trachyte-phonolite suite of St. Helena show that some of the late-fractionated rocks are enriched in 87Sr and depleted in 18O relative to the older basalts. The data rule out both the formation of the late-fractionated rocks by the partial melting of hydrothermally altered oceanic crust and the contamination of the volcanic rocks by oceanic sediment. It also appears to be incompatible with models based either on the melting of previously fractionated and crystallized liquids in the volcanic pile, or the long-term fractionation of lavas over several millions of years in a sub-volcanic magma chamber.It is concluded that hydrothermal interaction with meteoric water is the most important cause of the 18O depletion. If the interaction occurred at widely differing temperatures, and involved meteoric and seawaters, it might conceivably have caused both the oxygen and strontium isotope heterogeneities. 相似文献
55.
Przemyslaw Dera John D. Lazarz Vitali B. Prakapenka Madison Barkley Robert T. Downs 《Physics and Chemistry of Minerals》2011,38(7):517-529
Single-crystal X-ray diffraction experiments with SiO2 α-cristobalite reveal that the well-known reversible displacive phase transition to cristobalite-II, which occurs at approximately
1.8 GPa, can be suppressed by rapid pressure increase, leading to an overpressurized metastable state, persisting to pressure
as high as 10 GPa. In another, slow pressure increase experiment, the monoclinic high-pressure phase-II was observed to form
at ~1.8 GPa, in agreement with earlier in situ studies, and its crystal structure has been unambiguously determined. Single-crystal
data have been used to refine the structure models of both phases over the range of pressure up to the threshold of formation
of cristobalite X-I at ~12 GPa, providing important constraints on the feasibility of the two competing silica densification
models proposed in the literature, based on quantum mechanical calculations. Preliminary diffraction data obtained for cristobalite
X-I reveal a monoclinic unit cell that contradicts the currently assumed model. 相似文献
56.
Early fill of the Western Irish Namurian Basin: a complex relationship between turbidites and deltas 总被引:1,自引:0,他引:1
The Western Irish Namurian Basin developed in Early Carboniferous times as a result of extension across the Shannon Lineament which probably coincides with the lapetus Suture. During the late Dinantian, axial areas of the NE-SW elongate trough became deep, whilst shallow-water limestones were deposited on the flanks. This bathymetry persisted into the Namurian when carbonate deposition ceased. In axial areas, a relatively thick mudstone succession spans earliest Namurian to Chokierian whilst on the northwestern marginal shelf, a thin, condensed Namurian mudstone sequence, in which pre-Chokierian sediments are apparently absent, rests unconformably on the Dinantian. From late Chokierian to early Kinderscoutian, the basin was filled by sand-dominated clastic sediments. Sand deposition began in the axial area with deposition of a thick turbidite sequence, the Ross Formation, which is largely equivalent to the condensed mudstone succession on the flanks. Turbidity currents flowed mainly axially towards the north-east and deposited a sequence lacking well-defined patterns of vertical bed-thickness change. Channels and slide sheets occur towards the top of the formation. The turbidite system seems to have lacked well-defined lobes and stable distributary channels. Overlying the Ross Formation, the Gull Island Formation shows a decreasing incidence of turbidite sandstones at the expense of increasing siltstones. This formation is characterized by major slides and slumps interbedded with undisturbed strata. In the flanking areas of the basin, the formation is thinner, has only a few turbidites in the sequence above the condensed mudstones and contains only one slide sheet. Overall the formation is interpreted as the deposit of a major prograding slope, the lower part representing a ramp upon which turbidites were deposited, the upper part a highly unstable muddy slope lacking any conspicuous feeder channels through which sand might have been transferred to deeper water. Progradation of the slope appears to have been increasingly from the northwestern flank of the trough which is similar to the direction deduced for the overlying deltaic Tullig cyclothem which completes the initial basin fill. Whilst several features of the succession can be explained by envisaging the whole sequence as the product of one linked depositional system, the shifting directions of palaeocurrents and palaeoslope raise problems. The switch from axial to lateral supply casts doubt on the strict application of Walther's Law to the total sequence and seems to demand large avulsive shifts of the delta system on the shelf area to the west. 相似文献
57.
Derek W. Sears Gregory W. Kallemeyn John T. Wasson 《Earth and Planetary Science Letters》1983,62(1):180-192
The concentrations of 25 major, minor and trace elements have been determined in four clasts, a metal-rich inclusion and two dark metal-poor inclusions from the Abee enstatite chondrite. The clasts are heterogeneous, displaying 2-fold enrichments or depletions in some elements. The data suggest that there are two generations of metal, one with low, the other with high concentrations of refractory siderophiles. The other elemental patterns can be understood in terms of variations in the abundance of major minerals. We infer that Sc and Mn are located largely in the niningerite ((Fe,Mg)S), V in the troilite (FeS) and rare earth elements in the oldhamite (CaS).Heterogeneities among the clasts are probably primary, resulting from the accretion-agglomeration process, although shock processes in a regolithic setting remain a possibility provided that they were followed by a period of metamorphism sufficient to erase petrologic evidence.In the dark inclusions the concentrations of the rare earths, Eu excepted, are 4 × higher than mean EH levels; this infers enhanced amounts of CaS. The dark inclusions are low in siderophiles, Sc, Mn, K, Na and Al, implying low amounts of metal, niningerite and feldspar. The origin of the dark inclusions is unclear; they do not appear to be the result of a simple, single-stage process. 相似文献
58.
Many rocks passively acquire some time‐dependent or “viscous” remanent magnetism (VRM) at ambient temperatures, without any extraordinary energetic intervention. This magnetization overprints existing remanent magnetization so that it is effectively a remagnetization subparallel to the contemporary geomagnetic field, averaging the geomagnetic field orientation. Certain limestone masonry remagnetizes viscously over an archaeologically useful interval (100 to 8000 Ka) so that the degree of remagnetization is monotonically (but not linearly) related to the construction age. The laboratory unblocking temperature (TUB) that removes the viscous magnetization is a simple monotonic measure of relative age. The longer a piece of masonry remained stabilized in a certain orientation, the greater is its viscous remagnetization and the higher is its TUB. Monuments of known age with a similar limestone source permit us to establish a calibration curve of T UB against historical ages. The resulting calibration curve may then be used to predict the ages of otherwise‐undated masonry. Viscous remanent magnetism dating provides precision of <50a in medieval monuments in England and <150a precision for classical to Neolithic monuments in Cyprus; precision depends on the remagnetization rate of the limestone in question. Our calibration curves, for the Jurassic Oolitic Limestone of England and for the Lefkara‐Pakhna Chalks of Cyprus, allowed us to investigate the authenticity of a medieval English synagogue in Lincoln, England, and of a medieval house in Cyprus. Multiple archaeologic VRMs show that masonry was recycled in historical times. © 2006 Wiley Periodicals, Inc. 相似文献
59.
Anatomy of a subduction complex: architecture of the Franciscan Complex,California, at multiple length and time scales 总被引:1,自引:0,他引:1
John Wakabayashi 《International Geology Review》2015,57(5-8):669-746
The Franciscan Complex of California records over 150 million years of continuous E-dipping subduction that terminated with conversion to a dextral transform plate boundary. The Franciscan comprises mélange and coherent units forming a stack of thrust nappes, with significant along-strike variability, and downward-decreasing metamorphic grade and accretion ages. The Franciscan records progressive subduction, accretion, metamorphism, and exhumation, spanning the extended period of subduction, rather than events superimposed on pre-existing stratigraphy. High-pressure (HP) metamorphic rocks lack a thermal overprint, indicating continuity of subduction from subduction initiation at ca. 165 Ma to termination at ca. 25 Ma. Accretionary periods may have alternated with episodes of subduction erosion that removed some previously accreted material, but the complex collectively reflects a net addition of material to the upper plate. Mélanges (serpentinite and siliciclastic matrix) with exotic blocks have sedimentary origins as submarine mass transport deposits, whereas mélanges formed by tectonism comprise disrupted ocean plate stratigraphy and lack exotic blocks. The former are interbedded with and grade into coherent siliciclastic units. Palaeomegathrust horizons, separating nappes accreted at different times, appear restricted to narrow zones of <100 m thickness. Exhumation of Franciscan units, both coherent and mélange, was accommodated by significant extension of the hanging wall and cross-sectional extrusion. The amount of total exhumation, as well as exhumation since subduction termination, needs to be considered when comparing Franciscan architecture to modern and ancient subduction complexes. Equal dextral separation of folded Franciscan nappes and late Cenozoic (post-subduction) units across strands of the (post-subduction) San Andreas fault system shows that the folding of nappes took place prior to subduction termination. Dextral separation of similar clastic sedimentary suites in the Franciscan and the coeval Great Valley Group forearc basin is approximately that of the San Andreas fault system, precluding major syn-subduction strike-slip displacement within the Franciscan. 相似文献
60.
Preferential flow occurs in unsaturated conditions 总被引:6,自引:0,他引:6
John R. Nimmo 《水文研究》2012,26(5):786-789