全文获取类型
收费全文 | 44343篇 |
免费 | 867篇 |
国内免费 | 683篇 |
专业分类
测绘学 | 1119篇 |
大气科学 | 3566篇 |
地球物理 | 9164篇 |
地质学 | 14845篇 |
海洋学 | 4029篇 |
天文学 | 9715篇 |
综合类 | 137篇 |
自然地理 | 3318篇 |
出版年
2021年 | 280篇 |
2020年 | 359篇 |
2019年 | 362篇 |
2018年 | 766篇 |
2017年 | 711篇 |
2016年 | 1085篇 |
2015年 | 783篇 |
2014年 | 1015篇 |
2013年 | 2313篇 |
2012年 | 1248篇 |
2011年 | 1735篇 |
2010年 | 1456篇 |
2009年 | 2065篇 |
2008年 | 1858篇 |
2007年 | 1745篇 |
2006年 | 1676篇 |
2005年 | 1493篇 |
2004年 | 1472篇 |
2003年 | 1407篇 |
2002年 | 1330篇 |
2001年 | 1134篇 |
2000年 | 1132篇 |
1999年 | 1046篇 |
1998年 | 960篇 |
1997年 | 941篇 |
1996年 | 818篇 |
1995年 | 749篇 |
1994年 | 675篇 |
1993年 | 621篇 |
1992年 | 608篇 |
1991年 | 578篇 |
1990年 | 564篇 |
1989年 | 487篇 |
1988年 | 479篇 |
1987年 | 555篇 |
1986年 | 515篇 |
1985年 | 661篇 |
1984年 | 749篇 |
1983年 | 689篇 |
1982年 | 632篇 |
1981年 | 582篇 |
1980年 | 531篇 |
1979年 | 507篇 |
1978年 | 514篇 |
1977年 | 448篇 |
1976年 | 412篇 |
1975年 | 421篇 |
1974年 | 395篇 |
1973年 | 405篇 |
1972年 | 246篇 |
排序方式: 共有10000条查询结果,搜索用时 12 毫秒
891.
In anisotropic plasmas, the radiative power emitted and the power observed per unit solid angle should be calculated along the direction of the group velocityv
g
. The two power functions referred differ by a product of two factors: one is the group Doppler factor and the other is the squeezing effect of the radiative energy due to the dependence ofv
g
on direction. In this paper, the group Doppler factor is derived using two different methods, and the relevant physical concepts are analyzed in details. A number of numerical examples pertaining to astrophysical situations are presented, to illustrate the significance of the group Doppler effect with respect to the wave Doppler effect which is valid in isotropic media. 相似文献
892.
In November, 1981, NASA's first Shuttle Imaging Radar mission (SIR-A) began producing maplike photographic strips of Earth scenes from orbital altitude. A Saharan radar image acquired over Algeria clearly delineates two sedimentary basins, Erg Occidental and Erg Oriental, separated by an elongated zone of exposed bedrock, the M'Zab Chebka. At the NE margin of the Chebka, rimrocks, slopes, and ejecta deposits of Talemzane meteorite impact crater appear as a distinct two km wide radar-bright ring. This unique circle of strong radar backscatter distinguishes the solitary impact structure from numerous dayas (similarly appearing karstic depressions) which characterize the region. The crater is prominant on radar, but is obscure on optically obtained satellite and aircraft images, as are partly buried fluvial drainage systems and fault-block traces developed in bedrocks of the Chebka. Radar detection of an annular drainage system indicates possible presence of a ring graben at the crater. Brightest radar signals on the image are cultural features at recently developed gas fields near Hassi er R'Mel. 相似文献
893.
Late Eocene crystal-bearing spherules have been found in deep sea cores from the Caribbean Sea, Gulf of Mexico, equatorial Pacific Ocean, and eastern equatorial Indian Ocean. Keller et al. (1987) have suggested that the spherules from the western equatorial Pacific (Site 292, core 38) and eastern Indian Ocean (Site 216) are older (Globigerapsis semiinvoluta Zone) than those from the central equatorial Pacific, Gulf of Mexico, and Caribbean Sea (Globorotalia cerroazulensis Zone). The strongest argument in favor of two layers is the biostratigraphic data; however, published biostratigraphic interpretations are at odds with Keller et al.'s (1987) conclusions. Furthermore, paleomagnetic data for Site 292 seems to contradict Keller et al.'s conclusion that the spherules found in core 36 occur in sediments of the same stratigraphic age as those found in the central equatorial Pacific, Gulf of Mexico, and Caribbean Sea sites. Although the spherules from Sites 216 and 292 (core 38) do have higher average CaO, and lower average Al2O3 and FeO contents than the late Eocene spherules from the other sites, there is a great deal of overlap in composition. It is our opinion that the similarities in composition and petrography between the late Eocene crystal-bearing spherules are greater than the differences. Additionally, there seems to be a systematic change in composition and in amount of iridium excess from east to west when all the sites containing the crystal-bearing spherules are considered. We believe, therefore, that it is likely that the late Eocene crystal-bearing spherules all belong to a single event. 相似文献
894.
E. Carlsson A. Fedorov E. Budnik H. Gunell J.-A. Sauvaud Y. Futaana H. Andersson J.D. Winningham J.R. Sharber A.J. Coates D.O. Kataria H. Koskinen P. Riihelä J. Kozyra E. Roelof S. Livi K.C. Hsieh M. Grande J.-J. Thocaven S. Orsini M. Maggi P. Bochsler J. Woch K. Asamura 《Icarus》2006,182(2):320-328
Data from the Ion Mass Analyzer (IMA) sensor of the ASPERA-3 instrument suite on Mars Express have been analyzed to determine the mass composition of the escaping ion species at Mars. We have examined 77 different ion-beam events and we present the results in terms of flux ratios between the following ion species: CO+2/O+ and O+2/O+. The following ratios averaged over all events and energies were identified: CO+2/O+ = 0.2 and O+2/O+ = 0.9. The values measured are significantly higher, by a factor of 10 for O+2/O+, than a contemporary modeled ratio for the maximum fluxes which the martian ionosphere can supply. The most abundant ion species was found to be O+, followed by O+2 and CO+2. We estimate the loss of CO+2 to be by using the previous measurements of Phobos-2 in our calculations. The dependence of the ion ratios in relation to their energy ranges we studied, 0.3-3.0 keV, indicated that no clear correlation was found. 相似文献
895.
The evolution of a melt region produced by a large impact during Mars formation is addressed. While some impact induced melt is redistributed during crater excavation, sufficiently large impacts (much larger than basin forming impacts) generate an intact melt region which is retained beneath the excavation zone, i.e., a local magma ocean. Local magma ocean evolution depends on the effective rheology controlling large scale deformation of the solid part of the planet, mechanism of crystallization, and melt region size. Within the uncertainties of various parameters, two scenarios are possible. For sufficiently weak rheology or large melt region size, evolution is characterized by rapid extrusion and formation of a global magma ocean. For sufficiently strong rheology or small melt region size, in situ crystallization to a partially molten solid state occurs prior to isostatic adjustment. Subsequent to in situ crystallization, local magma ocean evolution depends on melt region size and efficiency of lateral redistribution compared to bulk conductive cooling. For large melt regions, lateral spreading occurs via plastic deformation and results in an asymmetric, global, partial melt layer. For small melt region size, viscous spreading viscous can result in bulk cooling below the solidus prior to formation of a global layer. A hypothesis for the origin of the hemispherical crustal dichotomy and Tharsis rise is suggested. The dichotomy is associated with a global partial melt layer produced by evolution of a large, local magma ocean. After dichotomy formation, evolution of a second, smaller, local magma ocean is related to Tharsis development. 相似文献
896.
Through a combination of aerobraking (drag deceleration) and ablation, meteoroids which enter planetary atmospheres may be slowed sufficiently to soft-land as meteorites. Results of an earlier study suggest that the current 6 mbar atmosphere of Mars is sufficient to aerobrake significant numbers of small (<10 kg) asteroidal-type meteoroids into survivable, low-velocity (<500 m s−1) impacts with the planet's surface. Since rates of meteorite production depend upon the density of Mars's atmosphere, they must also change as the martian climate changes. However, to date, martian meteorite production has received relatively little attention in the literature Here we expand upon our previous work to study martian meteorite production rates and how they depend upon variations of the martian atmosphere, and to estimate the ranges of mass, velocity and entry-angle that produce meteorites. We find that even the current atmosphere of Mars is sufficient to soft-land significant fractions of incident stony and iron objects, and that these fractions increase dramatically for denser martian atmospheres. Therefore, like impact cratering, meteorite populations may preserve evidence of past martian climates. 相似文献
897.
We resume and consistently extend our previous researches concerning the Gyldén‐type problem (a two‐body problem with time‐dependent equivalent gravitational parameter). To approach most of the concrete astronomical situations to be modelled in this way, we consider a periodic small perturbation. For the nonresonant case, we present a second‐order analytical solution. For the resonant case, we adopt the most realistic astronomical situation: only one dominant term of the Hamiltonian. In this case we point out a fundamental model of resonance, common to every resonant situation, and, moreover, identical to the first fundamental model of resonance . Considering the simplest model of periodic change of the equivalent gravitational parameter, we .nd that all possible resonances are con.ned to the first fundamental model. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
898.
We present the analysis of X‐ray spectral variability made on a sample of 7 Seyfert 1 bright galaxies, using XMM‐Newton data. From the “XMM‐Newton Science Archive” we selected those bright Seyfert 1 showing one or more prominent flares in their 2–10 keV light curves. For each of them we extracted spectra in 3 different time intervals: before, during and after the flare. We fitted them with a simple power law and then shifted a narrow emission and absorption line template across the 2.5–10 keV data, in order to investigate the presence of line‐like features with a confidence level greater than 99%. Some highly significant features were detected in 3 out of 7 sources studied. In particular, the 3 sources, namely PG 1211+143, NGC 4051 and NGC 3783, showed the presence of a variable emission feature in the 4.5–5.8 keV band, characterized by an increase of its intensity after the flare peak. Because of the observed variability pattern, this feature seems to be ascribable to a reverbered redshifted relativistic component of the Fe K line. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
899.
Timothy T. Barrows John Magee Gifford Miller L. Keith Fifield 《Meteoritics & planetary science》2019,54(11):2686-2697
Wolfe Creek crater lies in northwestern Australia at the edge of the Great Sandy Desert. Together with Meteor Crater, it is one of the two largest craters on Earth from which meteorite fragments have been recovered. The age of the impact is poorly constrained and unpublished data places the event at about 300,000 years ago. In comparison, Meteor Crater is well constrained by exposure dating. In this paper, we present new ages for Wolfe Creek Crater from exposure dating using the cosmogenic nuclides 10Be and 26Al, together with optically stimulated luminescence ages (OSL) on sand from a site created by the impact. We also present a new topographic survey of the crater using photogrammetry. The exposure ages range from ~86 to 128 ka. The OSL ages indicate that the age of the impact is most likely to be ~120 ka with a maximum age of 137 ka. Considering the geomorphic setting, the most likely age of the crater is 120 ± 9 ka. Last, we review the age of Meteor Crater in Arizona. Changes in production rates and scaling factors since the original dating work revise the impact age to 61.1 ± 4.8 ka, or ~20% older than previously reported. 相似文献
900.
Paula Lindgren Lydia Hallis Fredrik S. Hage Martin R. Lee John Parnell Anders Plan Alistair Doye Ian MacLaren 《Meteoritics & planetary science》2019,54(11):2698-2709
A carbon‐rich melt fragment from the Gardnos impact structure has been studied for a better understanding of the preservation and structural form(s) of carbon that have been processed by impact melting. The carbon was analyzed in situ in its original petrographic context within the melt fragment, using high‐resolution techniques including focused ion beam‐transmission electron microscopy and electron energy loss spectroscopy. Results show that the carbon is largely uniform and has a nanocrystalline grain size. The Gardnos carbon has a graphitic structure but with a large c/a ratio indicating disorder. The disorder could be a result of rapid heating to high temperatures during impact, followed by rapid cooling, with not enough time to crystallize into highly ordered graphite. However, temperature distribution during impact is extremely heterogenous, and the disordered Gardnos carbon could also represent material that avoided extreme temperatures, and thus, it was preserved. Understanding the structure of carbon during terrestrial impacts is important to help determine if the history of carbon within extraterrestrial samples is impact related. Furthermore, the degree of preservation of carbon during impact is key for locating and detecting organic compounds in extraterrestrial samples. This example from Gardnos, together with previous studies, shows that not all carbon is lost to oxidation during impact but that impact melting can encapsulate and preserve carbon where it is available. 相似文献