首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3586篇
  免费   137篇
  国内免费   21篇
测绘学   156篇
大气科学   414篇
地球物理   767篇
地质学   1126篇
海洋学   360篇
天文学   638篇
综合类   8篇
自然地理   275篇
  2022年   13篇
  2021年   38篇
  2020年   55篇
  2019年   51篇
  2018年   103篇
  2017年   87篇
  2016年   142篇
  2015年   86篇
  2014年   114篇
  2013年   174篇
  2012年   167篇
  2011年   200篇
  2010年   165篇
  2009年   229篇
  2008年   211篇
  2007年   180篇
  2006年   145篇
  2005年   130篇
  2004年   130篇
  2003年   127篇
  2002年   114篇
  2001年   87篇
  2000年   91篇
  1999年   80篇
  1998年   92篇
  1997年   59篇
  1996年   57篇
  1995年   38篇
  1994年   30篇
  1993年   40篇
  1992年   31篇
  1991年   40篇
  1990年   18篇
  1989年   22篇
  1988年   12篇
  1987年   26篇
  1986年   13篇
  1985年   24篇
  1984年   33篇
  1983年   23篇
  1982年   20篇
  1981年   14篇
  1980年   20篇
  1979年   14篇
  1978年   12篇
  1977年   13篇
  1976年   16篇
  1975年   14篇
  1973年   13篇
  1971年   11篇
排序方式: 共有3744条查询结果,搜索用时 15 毫秒
91.
We compare two geophysical survey measurements of the same type made at different times in order to characterize the change in the geological medium during the elapsed time. The aim of this study is to develop a strategy using a full non-linear inversion algorithm as the interpretation tool. In this way, not only the location and the form of the changes are recovered, but also the changes in the material parameters of the geological medium can be estimated. In order to solve this fully non-linear problem, the so-called ‘multiplicative regularized contrast source inversion’ (MR-CSI) method is employed. The unique property of this iterative method is that it does not solve the forward problem at each iterative step. This makes it possible to use the non-linear inversion algorithm for large-scale computation problems. The numerical results show that by taking into account the non-linear nature of the problem, interpretation of the time-lapse data can be significantly improved, compared with that obtained using linear inversion.  相似文献   
92.
van Westen  C. J.  Rengers  N.  Soeters  R. 《Natural Hazards》2003,30(3):399-419
The objective of this paper is to evaluate the importance of geomorphological expert knowledge in the generation of landslide susceptibility maps, using GIS supported indirect bivariate statistical analysis. For a test area in the Alpago region in Italy a dataset was generated at scale 1:5,000. Detailed geomorphological maps were generated, with legends at different levels of complexity. Other factor maps, that were considered relevant for the assessment of landslide susceptibility, were also collected, such as lithology, structural geology, surficial materials, slope classes, land use, distance from streams, roads and houses. The weights of evidence method was used to generate statistically derived weights for all classes of the factor maps. On the basis of these weights, the most relevant maps were selected for the combination into landslide susceptibility maps. Six different combinations of factor maps were evaluated, with varying geomorphological input. Success rates were used to classify the weight maps into three qualitative landslide susceptibility classes. The resulting six maps were compared with a direct susceptibility map, which was made by direct assignment of susceptibility classes in the field. The analysis indicated that the use of detailed geomorphological information in the bivariate statistical analysis raised the overall accuracy of the final susceptibility map considerably. However, even with the use of a detailed geomorphological factor map, the difference with the separately prepared direct susceptibility map is still significant, due to the generalisations that are inherent to the bivariate statistical analysis technique.  相似文献   
93.
94.
In order to test different hypotheses concerning the Paleozoic evolution of the Ural–Mongol belt (UMB) and the amalgamation of Eurasia, we studied Middle Devonian basalts from two localities (11 sites) and Lower Silurian volcanics, redbeds, and intra-formational conglomerates from three localities (20 sites) in the Chingiz Range of East Kazakhstan. The Devonian rocks prove to be heavily overprinted in the late Paleozoic, and a high-temperature, presumably primary, southerly, and down component is isolated at only four sites from a homoclinal section. Most Silurian redbeds are found to be remagnetized in the late Paleozoic; in contrast, a bipolar near-horizontal remanence, isolated from Silurian volcanics, is most probably primary as indicated by positive tilt and conglomerate tests. Analysis of paleomagnetic data from the Chingiz Range shows that southward-pointing directions in Ordovician, Silurian, and Devonian rocks are of normal polarity and hence indicate large-scale rotations after the Middle Devonian. The Chingiz paleomagnetic directions can be compared with Paleozoic data from the North Tien Shan and with the horseshoe-shaped distribution of subduction-related volcanic complexes in Kazakhstan. Both paleomagnetic and geological data support the idea that today's strongly curved volcanic belts of Kazakhstan are an orocline, deformed mostly before mid-Permian time. Despite the determination of nearly a dozen new Paleozoic paleopoles in this study and other recent publications by our team, significant temporal and spatial gaps remain in our knowledge of the paleomagnetic directions during the middle and late Paleozoic. However, the paleomagnetic results from the Chingiz Range and the North Tien Shan indicate that these areas show generally coherent motions with Siberia and Baltica, respectively.  相似文献   
95.
Establishing relative and absolute time frameworks for the sedimentary, magmatic, tectonic and gold mineralisation events in the Norseman-Wiluna Belt of the Archean Yilgarn Craton of Western Australia, has long been the main aim of research efforts. Recently published constraints on the timing of sedimentation and absolute granite ages have emphasized the shortcomings of the established rationale used for interpreting the timing of deformation events. In this paper the assumptions underlying this rationale are scrutinized, and it is shown that they are the source of significant misinterpretations. A revised time chart for the deformation events of the belt is established. The first shortening phase to affect the belt, D1, was preceded by an extensional event D1e and accompanied by a change from volcanic-dominated to plutonic-dominated magmatism at approximately 2685–2675 Ma. Later extension (D2e) controlled deposition of the ca 2655 Ma Kurrawang Sequence and was followed by D2, a major shortening event, which folded this sequence. D2 must therefore have started after 2655 Ma—at least 20 Ma later than previously thought and after the voluminous 2670–2655 Ma high-Ca granite intrusion. Younger transcurrent deformation, D3–D4, waned at around 2630 Ma, suggesting that the crustal shortening deformation cycle D2–D4 lasted approximately 20–30 Ma, contemporaneous with low-volume 2650–2630 Ma low-Ca granites and alkaline intrusions. Time constraints on gold deposits suggest a late mineralisation event between 2640–2630 Ma. Thus, D2–D4 deformation cycle and late felsic magmatism define a 20–30 Ma long tectonothermal event, which culminated with gold mineralisation. The finding that D2 folding took place after voluminous high-Ca granite intrusion led to research into the role of competent bodies during folding by means of numerical models. Results suggest that buoyancy-driven doming of pre-tectonic competent bodies trigger growth of antiforms, whereas non-buoyant, competent granite bodies trigger growth of synforms. The conspicuous presence of pre-folding granites in the cores of anticlines may be a result from active buoyancy doming during folding.  相似文献   
96.
 A two-dimensional vertically integrated ice flow model has been developed to test the importance of various processes and concepts used for the prediction of the contribution of the Greenland ice-sheet to sea-level rise over the next 350 y (short-term response). The mass balance is modelled by the degree-day method and the energy-balance method. The lithosphere is considered to respond isostatically to a point load and the time evolution of the bedrock follows from a viscous asthenosphere. According to the IPCC-IS92a scenario (with constant aerosols after 1990) the Greenland ice-sheet is likely to cause a global sea level rise of 10.4 cm by 2100 AD. It is shown, however, that the result is sensitive to precise model formulations and that simplifications as used in the sea-level projection in the IPCC-96 report yield less accurate results. Our model results indicate that, on a time scale of a hundred years, including the dynamic response of the ice-sheet yields more mass loss than the fixed response in which changes in geometry are not incorporated. It appears to be important to consider sliding, as well as the fact that climate sensitivity increases for larger perturbations. Variations in predicted sea-level change on a time scale of hundred years depend mostly on the initial state of the ice-sheet. On a time scale of a few hundred years, however, the variability in the predicted melt is dominated by the variability in the climate scenarios. Received: 21 August 1996/Accepted: 12 May 1997  相似文献   
97.
Two frozen cores from Blelham Tarn were subsampled and measured using mineral magnetic, loss-on-ignition (LOI), radiometric, granulometric and diatom analyses. A detailed chronology was established using varves, radioisotopes and diatoms. This has enabled an accurately dated reconstruction of sedimentation over the past forty years. Despite a large increase in lake productivity, evidence suggests that the observed exponential increase in sedimentation rates can be attributed to erosion within the catchment. The predominant sediment source has been identified as surface soil. A comparison between the trend of accelerated sedimentation and the record of increased sheep stocking density for the area within which the most of the catchment lies, as well as observations of contemporary surface processes within the catchment, both suggest that much of the recent erosion is a direct response to increased pressure from sheep grazing.  相似文献   
98.
99.
 The beginning of dehydration melting in the tonalite system (biotite-plagioclase-quartz) is investigated in the pressure range of 2–12 kbar. A special method consisting of surrounding a crystal of natural plagioclase (An45) with a biotite-quartz mixture, and observing reactions at the plagioclase margin was employed for precise determination of the solidus for dehydration melting. The beginning of dehydration melting was worked out at 5 kbar for a range of compositions of biotite varying from iron-free phlogopite to iron-rich Ann70, with and without titanium, fluorine and extra aluminium in the biotite. The dehydration melting of phlogopite + plagioclase (An45) + quartz begins between 750 and 770°C at pressures of 2 and 5 kbar, at approximately 740°C at 8 kbar and between 700 and 730°C at 10 kbar. At 12 kbar, the first melts are observed at temperatures as low as 700°C. The data indicate an almost vertical dehydration melting solidus curve at low pressures which bends backward to lower temperatures at higher pressures (> 5 kbar). The new phases observed at pressures ≤ 10 kbar are melt + enstatite + clinopyroxene + potassium feldspar ± amphibole. In addition to these, zoisite was also observed at 12 kbar. With increasing temperature, phlogopite becomes enriched in aluminium and deficient in potassium. Substitution of octahedral magnesium by aluminium and titanium in the phlogopite, as well as substitution of hydroxyl by fluorine, have little effect on the beginning of dehydration melting temperatures in this system. The dehydration melting of biotite (Ann50) + plagioclase (An45) + quartz begins 50°C below that of phlogopite bearing starting composition. Solid reaction products are orthopyroxene + clinopyroxene + potassium feldspar ± amphibole. Epidote was also observed above 8 kbar, and garnet at 12 kbar (750°C). The experiments on the iron-bearing system performed at ≤ 5 kbar were buffered with NiNiO. The f O 2 in high pressure runs lies close to CoCoO. With the substitution of octahedral magnesium and iron by aluminium and titanium, and replacement of hydroxyl by fluorine in biotite, the beginning of dehydration melting temperatures in this system increase up to 780°C at 5 kbar, which is 70°C above the beginning of dehydration melting of the assemblage containing biotite (Ann50) of ideal composition. The dehydration melting at 5 kbar in the more iron-rich Ann70-bearing starting composition begins at 730°C, and in the Ann25-bearing assemblage at 710°C. This indicates that quartz-biotite-plagioclase assemblages with intermediate compositions of biotite (Ann25 and Ann50) melt at lower temperatures as compared to those containing Fe-richer or Mg-richer biotites. This study shows that the dehydration melting of tonalites may begin at considerably lower temperatures than previously thought, especially at high pressures (>5 kbar). Received: 27 December 1995 / Accepted: 7 May 1996  相似文献   
100.
Dehydration melting of tonalites. Part II. Composition of melts and solids   总被引:6,自引:0,他引:6  
 Dehydration melting of tonalitic compositions (phlogopite or biotite-plagioclase-quartz assemblages) is investigated within a temperature range of 700–1000°C and pressure range of 2–15 kbar. The solid reaction products in the case of the phlogopite-plagioclase(An45)-quartz starting material are enstatite, clinopyroxene and potassium feldspar, with amphiboles occurring occasionally. At 12 kbar, zoisite is observed below 800°C, and garnet at 900°C. The reaction products of dehydration melting of the biotite (Ann50)-plagioclase (An45)-quartz assemblage are melt, orthopyroxene, clinopyroxene, amphibole and potassium feldspar. At pressures > 8 kbar and temperatures below 800°C, epidote is also formed. Almandine-rich garnet appears above 10 kbar at temperatures ≥ 750°C. The composition of melts is granitic to granodioritic, hence showing the importance of dehydration melting of tonalites for the formation of granitic melts and granulitic restites at pressure-temperature conditions within the continental crust. The melt compositions plot close to the cotectic line dividing the liquidus surfaces between quartz and potassium feldspar in the haplogranite system at 5 kbar and a H 2O = 1. The composition of the melts changes with the composition of the starting material, temperature and pressure. With increasing temperature, the melt becomes enriched in Al2O3 and FeO+MgO. Potash in the melt is highest just when biotite disappears. The amount of CaO decreases up to 900°C at 5 kbar whereas at higher temperatures it increases as amphibole, clinopyroxene and more An-component dissolve in the melt. The Na2O content of the melt increases slightly with increase in temperature. The composition of the melt at temperatures > 900°C approaches that of the starting assemblage. The melt fraction varies with composition and proportion of hydrous phases in the starting composition as well as temperature and pressure. With increasing modal biotite from 20 to 30 wt%, the melt proportion increases from 19.8 to 22.3 vol.% (850°C and 5 kbar). With increasing temperature from 800 to 950°C (at 5 kbar), the increase in melt fraction is from 11 to 25.8 vol.%. The effect of pressure on the melt fraction is observed to be relatively small and the melt proportion in the same assemblage decreases at 850°C from 19.8 vol.% at 5 kbar to 15.3 vol.% at 15 kbar. Selected experiments were reversed at 2 and 5 kbar to demonstrate that near equilibrium compositions were obtained in runs of longer duration. Received: 27 December 1995 / Accepted: 7 May 1996  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号