全文获取类型
收费全文 | 475篇 |
免费 | 10篇 |
国内免费 | 2篇 |
专业分类
测绘学 | 42篇 |
大气科学 | 62篇 |
地球物理 | 118篇 |
地质学 | 174篇 |
海洋学 | 26篇 |
天文学 | 35篇 |
综合类 | 4篇 |
自然地理 | 26篇 |
出版年
2021年 | 5篇 |
2020年 | 10篇 |
2019年 | 6篇 |
2018年 | 15篇 |
2017年 | 20篇 |
2016年 | 25篇 |
2015年 | 20篇 |
2014年 | 16篇 |
2013年 | 25篇 |
2012年 | 22篇 |
2011年 | 28篇 |
2010年 | 23篇 |
2009年 | 29篇 |
2008年 | 19篇 |
2007年 | 19篇 |
2006年 | 6篇 |
2005年 | 14篇 |
2004年 | 5篇 |
2003年 | 10篇 |
2002年 | 12篇 |
2001年 | 7篇 |
2000年 | 4篇 |
1999年 | 7篇 |
1998年 | 4篇 |
1997年 | 7篇 |
1996年 | 8篇 |
1995年 | 5篇 |
1993年 | 5篇 |
1992年 | 8篇 |
1991年 | 3篇 |
1990年 | 5篇 |
1989年 | 3篇 |
1987年 | 4篇 |
1984年 | 6篇 |
1982年 | 4篇 |
1981年 | 4篇 |
1980年 | 6篇 |
1979年 | 3篇 |
1978年 | 3篇 |
1974年 | 4篇 |
1973年 | 4篇 |
1972年 | 3篇 |
1971年 | 4篇 |
1969年 | 3篇 |
1968年 | 3篇 |
1967年 | 2篇 |
1966年 | 2篇 |
1964年 | 2篇 |
1962年 | 2篇 |
1950年 | 2篇 |
排序方式: 共有487条查询结果,搜索用时 15 毫秒
11.
Richard A. Staff Takeshi Nakagawa Gordon Schlolaut Michael H. Marshall Achim Brauer Henry F. Lamb Christopher Bronk Ramsey Charlotte L. Bryant Fiona Brock Hiroyuki Kitagawa Johannes van der Plicht Rebecca L. Payne Victoria C. Smith Darren F. Mark Alison Macleod Simon P. E. Blockley Jean‐Luc Schwenninger Pavel E. Tarasov Tsuyoshi Haraguchi Katsuya Gotanda Hitoshi Yonenobu Yusuke Yokoyama Suigetsu Project Members 《Boreas: An International Journal of Quaternary Research》2013,42(2):259-266
The varved sediment of Lake Suigetsu (central Japan) provides a valuable opportunity to obtain high‐resolution, multi‐proxy palaeoenvironmental data across the last glacial/interglacial cycle. In order to maximize the potential of this archive, a well‐constrained chronology is required. This paper outlines the multiple geochronological techniques being applied – namely varve counting, radiocarbon dating, tephrochronology (including argon–argon dating) and optically stimulated luminescence (OSL) – and the approaches by which these techniques are being integrated to form a single, coherent, robust chronology. Importantly, we also describe here the linkage of the floating Lake Suigetsu (SG06) varve chronology and the absolute (IntCal09 tree‐ring) time scale, as derived using radiocarbon data from the uppermost (non‐varved) portion of the core. This tie‐point, defined as a distinct (flood) marker horizon in SG06 (event layer B‐07–08 at 1397.4 cm composite depth), is thus derived to be 11 255 to 11 222 IntCal09 cal. years BP (68.2% probability range). 相似文献
12.
Jutta ZIPFEL Bradley L. JOLLIFF Ralf GELLERT Kenneth E. HERKENHOFF Rudolf RIEDER Robert ANDERSON James F. BELL III Johannes BRÜCKNER Joy A. CRISP Philip R. CHRISTENSEN Benton C. CLARK Paulo A.
De SOUZA Jr. Gerlind DREIBUS Claude
D’USTON Thanasis ECONOMOU Steven P. GOREVAN Brian C. HAHN Göstar KLINGELHÖFER Timothy J. McCOY Harry Y. McSWEEN Jr. Douglas W. MING Richard V. MORRIS Daniel S. RODIONOV Steven W. SQUYRES Heinrich WÄNKE Shawn P. WRIGHT Michael B. WYATT Albert S. YEN 《Meteoritics & planetary science》2011,46(1):1-20
Abstract– The Opportunity rover of the Mars Exploration Rover mission encountered an isolated rock fragment with textural, mineralogical, and chemical properties similar to basaltic shergottites. This finding was confirmed by all rover instruments, and a comprehensive study of these results is reported here. Spectra from the miniature thermal emission spectrometer and the Panoramic Camera reveal a pyroxene‐rich mineralogy, which is also evident in Mössbauer spectra and in normative mineralogy derived from bulk chemistry measured by the alpha particle X‐ray spectrometer. The correspondence of Bounce Rock’s chemical composition with the composition of certain basaltic shergottites, especially Elephant Moraine (EET) 79001 lithology B and Queen Alexandra Range (QUE) 94201, is very close, with only Cl, Fe, and Ti exhibiting deviations. Chemical analyses further demonstrate characteristics typical of Mars such as the Fe/Mn ratio and P concentrations. Possible shock features support the idea that Bounce Rock was ejected from an impact crater, most likely in the Meridiani Planum region. Bopolu crater, 19.3 km in diameter, located 75 km to the southwest could be the source crater. To date, no other rocks of this composition have been encountered by any of the rovers on Mars. The finding of Bounce Rock by the Opportunity rover provides further direct evidence for an origin of basaltic shergottite meteorites from Mars. 相似文献
13.
Julia Scharwächter Andreas Eckart Susanne Pfalzner Jens Zuther Melanie Krips Eva Schinnerer Johannes Staguhn 《Astrophysics and Space Science》2005,295(1-2):101-106
I Zw 1 and 3C 48 are two neighboring template objects at a later stage of the hypothesized merger-driven evolutionary sequence from ultra-luminous infrared galaxies (ULIRGs) to quasi-stellar objects (QSOs). Since galaxy mergers are assumed to trigger the evolution, it is important to confirm the merger properties of transitionary objects. Using multi-wavelength observations and N-body simulations, the merger histories of I Zw 1 and 3C 48 have been investigated in two separate case studies. Here, the results from both studies are compared and their relevance for the evolutionary hypothesis is discussed.This research is partly based on observations with ISAAC at the Very Large Telescope (VLT) of the European Southern Observatory (ESO) under projects 67.B-0009 and 67.B-0019. 相似文献
14.
15.
Control of sediment dynamics by vegetation as a key function driving biogeomorphic succession within fluvial corridors 总被引:1,自引:0,他引:1
Dov Corenblit Johannes Steiger Angela M. Gurnell Eric Tabacchi Lydie Roques 《地球表面变化过程与地形》2009,34(13):1790-1810
Riparian vegetation responds to hydrogeomorphic disturbances and environmental changes and also controls these changes. Here, we propose that the control of sediment erosion and deposition by riparian vegetation is a key geomorphological and ecological (i.e. biogeomorphic) function within fluvial corridors. In a 3 year study, we investigated the correlations between riparian vegetation and hydrogeomorphic dynamics along a transverse gradient from the main channel to the floodplain of the River Tech, France. Sediment erosion and deposition rates varied significantly along the transverse gradient as a function of the vegetation biovolume intercepting water flow. These effects, combined with the extremely strong mechanical resistance of pioneer woody structures and strong resilience of pioneer labile herbaceous communities, Populus nigra and Salix spp., explain the propensity of biogeomorphic succession (i.e. the synergy between vegetation succession and landform construction) to progress between destructive floods. This geomorphological function newly identified as an ‘ecosystem function’ per se encompasses the coupling of habitat and landform creation, maintenance and change with fundamental ecosystem structural changes in space and in time. Three different biogeomorphic functions, all related to the concept of ecosystem engineering, were identified: (i) the function of pioneer herbaceous communities to retain fine sediment and diaspores in the exposed zones of the active tract near the water resource, facilitating recruitment of further herbaceous and Salicacea species; (ii) the function of woody vegetation to drive the construction of forested islands and floodplains; and (iii) the function of stabilised riparian forests to act as ‘diversity reservoirs’ which can support regeneration after destructive floods. Overall, this study based on empirical data points to the fundamental importance of sediment flow control by pioneer riparian vegetation in defining fluvial ecosystem and landform organisation in time and in space. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
16.
Johannes Bouman Sietse Rispens Thomas Gruber Radboud Koop Ernst Schrama Pieter Visser Carl Christian Tscherning Martin Veicherts 《Journal of Geodesy》2009,83(7):659-678
One of the products derived from the gravity field and steady-state ocean circulation explorer (GOCE) observations are the
gravity gradients. These gravity gradients are provided in the gradiometer reference frame (GRF) and are calibrated in-flight
using satellite shaking and star sensor data. To use these gravity gradients for application in Earth scienes and gravity
field analysis, additional preprocessing needs to be done, including corrections for temporal gravity field signals to isolate
the static gravity field part, screening for outliers, calibration by comparison with existing external gravity field information
and error assessment. The temporal gravity gradient corrections consist of tidal and nontidal corrections. These are all generally
below the gravity gradient error level, which is predicted to show a 1/f behaviour for low frequencies. In the outlier detection, the 1/f error is compensated for by subtracting a local median from the data, while the data error is assessed using the median absolute
deviation. The local median acts as a high-pass filter and it is robust as is the median absolute deviation. Three different
methods have been implemented for the calibration of the gravity gradients. All three methods use a high-pass filter to compensate
for the 1/f gravity gradient error. The baseline method uses state-of-the-art global gravity field models and the most accurate results
are obtained if star sensor misalignments are estimated along with the calibration parameters. A second calibration method
uses GOCE GPS data to estimate a low-degree gravity field model as well as gravity gradient scale factors. Both methods allow
to estimate gravity gradient scale factors down to the 10−3 level. The third calibration method uses high accurate terrestrial gravity data in selected regions to validate the gravity
gradient scale factors, focussing on the measurement band. Gravity gradient scale factors may be estimated down to the 10−2 level with this method. 相似文献
17.
Johannes Antenor Senn Fabian Ewald Fassnacht Jana Eichel Steffen Seitz Sebastian Schmidtlein 《地球表面变化过程与地形》2020,45(7):1487-1498
Soil loss caused by erosion has enormous economic and social impacts. Splash effects of rainfall are an important driver of erosion processes; however, effects of vegetation on splash erosion are still not fully understood. Splash erosion processes under vegetation are investigated by means of throughfall kinetic energy (TKE). Previous studies on TKE utilized a heterogeneous set of plant and canopy parameters to assess vegetation's influence on erosion by rain splash but remained on individual plant- or plot-levels. In the present study we developed a method for the area-wide estimation of the influence of vegetation on TKE using remote sensing methods. In a literature review we identified key vegetation variables influencing splash erosion and developed a conceptual model to describe the interaction of vegetation and raindrops. Our model considers both amplifying and protecting effect of vegetation layers according to their height above the ground and aggregates them into a new indicator: the Vegetation Splash Factor (VSF). It is based on the proportional contribution of drips per layer, which can be calculated via the vegetation cover profile from airborne LiDAR datasets. In a case study, we calculated the VSF using a LiDAR dataset for La Campana National Park in central Chile. The studied catchment comprises a heterogeneous mosaic of vegetation layer combinations and types and is hence well suited to test the approach. We calculated a VSF map showing the relation between vegetation structure and its expected influence on TKE. Mean VSF was 1.42, indicating amplifying overall effect of vegetation on TKE that was present in 81% of the area. Values below 1 indicating a protective effect were calculated for 19% of the area. For future work, we recommend refining the weighting factor by calibration to local conditions using field-reference data and comparing the VSF with TKE field measurements. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd 相似文献
18.
Considering river structure and stability in the light of evolution: feedbacks between riparian vegetation and hydrogeomorphology 下载免费PDF全文
Dov Corenblit Neil S. Davies Johannes Steiger Martin R. Gibling Gudrun Bornette 《地球表面变化过程与地形》2015,40(2):189-207
River ecological functioning can be conceptualized according to a four‐dimensional framework, based on the responses of aquatic and riparian communities to hydrogeomorphic constraints along the longitudinal, transverse, vertical and temporal dimensions of rivers. Contemporary riparian vegetation responds to river dynamics at ecological timescales, but riparian vegetation, in one form or another, has existed on Earth since at least the Middle Ordovician (c. 450 Ma) and has been a significant controlling factor on river geomorphology since the Late Silurian (c. 420 Ma). On such evolutionary timescales, plant adaptations to the fluvial environment and the subsequent effects of these adaptations on fluvial sediment and landform dynamics resulted in the emergence, from the Silurian to the Carboniferous, of a variety of contrasted fluvial biogeomorphic types where water flow, morphodynamics and vegetation interacted to different degrees. Here we identify several of these types and describe the consequences for biogeomorphic structure and stability (i.e. resistance and resilience), along the four river dimensions, of feedbacks between riparian plants and hydrogeomorphic processes on contrasting ecological and evolutionary timescales. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
19.
Implications of diverse sedimentation patterns in Hala Lake, Qinghai Province, China for reconstructing Late Quaternary climate 总被引:2,自引:0,他引:2
Bernd Wünnemann Johannes Wagner Yongzhan Zhang Dada Yan Rong Wang Yan Shen Xiaoyu Fang Jiawu Zhang 《Journal of Paleolimnology》2012,48(4):725-749
Hala Lake is located in the Qilian Mountains, Qinghai Province, China, at 4,078?m a.s.l. Its sediments contain an archive of climate and hydrologic changes during the Late Quaternary, as it is located close to the area influenced by the East-Asian summer monsoon and westerly-driven air masses. Sedimentation patterns and depositional conditions within the lake were investigated using eight sediment cores from different water depths, and this information was used to evaluate the feasibility of using a single core to reconstruct past climate and hydrological conditions. Long core H7, from the center of the lake (65?m water depth) and core H8 from a western, near-shore location (20?m water depth), were compared in detail using sediment composition and geochemical data (X-ray fluorescence, loss-on-ignition and CNS analysis). Age models were constructed using 17 AMS radiocarbon dates and indicate negligible reservoir error for sediments from the lake center and?~1,000?year errors for the near-shore sediment core. Cores H1?CH5 and HHLS21-1 revealed a sediment succession from sand and silty clay to laminated clay on the southern side of the lake. Undisturbed, finely laminated sediments were found at water depths???15?m. Core H5 (2.5?m long), from 31?m water depth, yielded abundant green algal mats mixed with clayey lake deposits and was difficult to interpret. Algae occurred between 25 and 32?m water depth and influenced the dissolved oxygen content of the stratified lake. Comparison of cores H7 and H8 yielded prominent mismatches for different time periods, which may, in part, be attributed to internal lacustrine processes, independent of climate influence. We thus conclude that data from a single sediment core may lead to different climate inferences. Common shifts among proxy data, however, showed that major climate shifts, of regional to global significance, can be tracked and allow reconstruction of lake level changes over the last 24,000?years. Results indicate advance of glaciers into the lake basin during the LGM, at which time the lake experienced lowest levels, 25?C50?m below present stage. Stepwise refilling began at ca. 16 kyr BP and reached the ?25?m level during the B?lling/Aller?d warm phase, ca. 13.5 kyr BP. A desiccation episode falls within the Younger Dryas, followed by a substantial lake level rise during the first millennium of the Holocene, a result of climate warming, which promoted glacier melt. By ca. 7.6 kyr BP, the lake reached a stable high stand similar to the present level, which persisted until ca. 6 kyr BP. Disturbed sediments in core H7 indicate a single mass flow that was most likely triggered by a major seismic event?~8.5 kyr BP. Subsequent lake development remains unclear as a consequence of data mismatches, but may indicate a general trend to deteriorating conditions and lake level lowstands at ca. 5.0?C4.2, 2.0 and 0.5 kyr BP. 相似文献
20.
Tracing variability of run‐off generation in mountainous permafrost of semi‐arid north‐eastern Mongolia 下载免费PDF全文
The headwaters of mountainous, discontinuous permafrost regions in north‐eastern Mongolia are important water resources for the semi‐arid country, but little is known about hydrological processes there. Run‐off generation on south‐facing slopes, which are devoid of permafrost, has so far been neglected and is totally unknown for areas that have been affected by recent forest fires. To fill this knowledge gap, the present study applied artificial tracers on a steppe‐vegetated south‐facing and on two north‐facing slopes, burned and unburned. Combined sprinkling and dye tracer experiments were used to visualize processes of infiltration and water fluxes in the unsaturated zone. On the unburned north‐facing slope, rapid and widespread infiltration through a wet organic layer was observed down to the permafrost. On the burned profile, rapid infiltration occurred through a combusted organic and underlying mineral layer. Stained water seeped out at the bottom of both profiles suggesting a general tendency to subsurface stormflow (SSF). Ongoing SSF could directly be studied 24 h after a high‐intensity rainfall event on a 55‐m hillslope section in the burned forest. Measurements of water temperature proved the role of the permafrost layer as a base horizon for SSF. Repeated tracer injections allowed direct insights into SSF dynamics: A first injection suggested rather slow dispersive subsurface flow paths; whereas 18 h later, a second injection traced a more preferential flow system with 20 times quicker flow velocities. We speculate that these pronounced SSF dynamics are limited to burned slopes where a thermally insulating organic layer is absent. On three south‐facing soil profiles, the applied tracer remained in the uppermost 5 cm of a silt‐rich mineral soil horizon. No signs of preferential infiltration could be found, which suggested reduced biological activity under a harsh, dry and cold climate. Instead, direct observations, distributed tracers and charcoal samples provided evidence for the occurrence of overland flow. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献