首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   7篇
  国内免费   4篇
测绘学   2篇
大气科学   22篇
地球物理   24篇
地质学   69篇
海洋学   5篇
天文学   10篇
自然地理   2篇
  2022年   1篇
  2021年   2篇
  2020年   3篇
  2019年   2篇
  2018年   5篇
  2016年   6篇
  2015年   3篇
  2014年   5篇
  2013年   11篇
  2012年   10篇
  2011年   8篇
  2010年   7篇
  2009年   14篇
  2008年   6篇
  2007年   7篇
  2006年   13篇
  2005年   2篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  2001年   4篇
  1998年   2篇
  1995年   2篇
  1994年   3篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1969年   1篇
  1965年   1篇
  1964年   1篇
  1962年   1篇
排序方式: 共有134条查询结果,搜索用时 905 毫秒
51.
Abstract. The spatial microdistribution of foraminifers was tested by the method of quadratic samplings on 2 sample grids in an intertidal pool of the northernmost Adriatic sea. Abundant species of foraminifers exhibit patchy distributions throughout; the distribution-patterns of some species correspond nearly completely. Using statistical methods (regression- and correlation-analyses) correlations to abiotic and biotic factors (water depth, exposure rate, seagrass, benthonic algae) were ascertained. The significant correlations of the foraminiferal frequencies to blue-green algae and/or diatoms enable an interpretation of these connexions as food dependences. Several foraminiferal species seem to have specific diets.  相似文献   
52.
Kimberlite-hosted diamond deposits of southern Africa: A review   总被引:4,自引:0,他引:4  
Following the discovery of diamonds in river deposits in central South Africa in the mid nineteenth century, it was at Kimberley where the volcanic origin of diamonds was first recognized. These volcanic rocks, that were named “kimberlite”, were to become the corner stone of the economic and industrial development of southern Africa. Following the discoveries at Kimberley, even more valuable deposits were discovered in South Africa and Botswana in particular, but also in Lesotho, Swaziland and Zimbabwe.A century of study of kimberlites, and the diamonds and other mantle-derived rocks they contain, has furthered the understanding of the processes that occurred within the sub-continental lithosphere and in particular the formation of diamonds. The formation of kimberlite-hosted diamond deposits is a long-lived and complex series of processes that first involved the growth of diamonds in the mantle, and later their removal and transport to the earth's surface by kimberlite magmas. Dating of inclusions in diamonds showed that diamond growth occurred several times over geological time. Many diamonds are of Archaean age and many of these are peridotitic in character, but suites of younger Proterozoic diamonds have also been recognized in various southern African mines. These younger ages correspond with ages of major tectono-thermal events that are recognized in crustal rocks of the sub-continent. Most of these diamonds had eclogitic, websteritic or lherzolitic protoliths.In southern Africa, kimberlite eruptions occurred as discrete events several times during the geological record, including the Early and Middle Proterozoic, the Cambrian, the Permian, the Jurassic and the Cretaceous. Apart from the Early Proterozoic (Kuruman) kimberlites, all of the other events have produced deposits that have been mined. It should however be noted that only about 1% of the kimberlites that have been discovered have been successfully exploited.In this paper, 34 kimberlite mines are reviewed with regard to their geology, mantle xenolith, xenocryst and diamond characteristics and production statistics. These mines vary greatly in size, grade and diamond-value, as well as in the proportions and types of mantle mineral suites that they contain. They include some of the world's richest mines, such as Jwaneng in Botswana, to mines that are both small and marginal, such as the Frank Smith Mine in South Africa. They include large diatremes such as Orapa and small dykes such as those mined at Bellsbank, Swartruggens and near Theunissen. These mines are all located on the Archaean Kalahari Craton, and it is apparent that the craton and its associated sub-continental lithosphere played an important role in providing the right environment for diamond growth and for the formation of the kimberlite magmas that were to transport them to the surface.  相似文献   
53.
54.
55.
56.
57.
A GIS-based model framework, designed as a raster module for the Open Source software GRASS, was developed for simulating the mobilization and motion of debris flows triggered by rainfall. Designed for study areas up to few square kilometres, the tool combines deterministic and empirical model components for infiltration and surface runoff, detachment and sediment transport, slope stability, debris flow mobilization, and travel distance and deposition. The model framework was applied to selected study areas along the international road from Mendoza (Argentina) to Central Chile. The input parameters were investigated at the local scale. The model was run for a number of rainfall scenarios and evaluated using field observations and historical archives in combination with meteorological data. The sensitivity of the model to a set of key parameters was tested. The major scope of the paper is to highlight the capabilities of the model—and of this type of models in general—as well as its limitations and possible solutions.  相似文献   
58.
Solar prominences have been simultaneously observed in the integrated light of the He D3 and the Hβ emissions on two successive days, using the SST on La Palma with its tip-tilt mirror locked on a nearby white-light limb facular grain. The spatial and the temporal variation of the integrated line intensities and their ratio shows mainly two characteristics: (A) Constant emission ratio (even) in regions with substantial intensity variations and (B) varying emission ratio (often) tightly related to intensity structures of the prominence. (A) May be explained by a different number of superposing threads along the line of sight having very similar physical state. (B) Indicates threads with different intrinsic physical states; these may depend on the gas pressure or the inner structure of each thread, i.e., the “packing density,” affecting the penetration of ionizing EUV radiation, which affects the He i level populations and thus the rate of the triplet excitation.  相似文献   
59.
60.
Present‐day galactic data permit the construction of a galactic model in which the galactic gravitational field is described by a gravitational function rather than the Newtonian gravitational “constant” G. The concept of this empirical gravitational function, which is based on galactic orbital velocity data, envisages G as a function of time and space. In this model the interaction of this gravitational function, which has rotational symmetry in the galactic plane, and the slightly elliptical galactic orbit of the solar system results in a systematic variation of G. This interaction specifies a simple galactic time‐scale which can be conveniently compared with events of the geological time‐scale. For reasons of galactic evolution and modifying effects due to suspected changes of mass distributions in the universe with the passage of time, which are classed here under the Dirac‐Jordan Effect, such a comparison is initially restricted to the past 1#fr1/4> cosmic years, or 350 million years. The problems in extending such a comparison to 8 cosmic years are discussed, and such an extension seems promising, but it is hampered by the paucity of geological and geophysical data from the lower Palaeozoic and the Precambrian and the present uncertainties in regard to galactic evolution.

“Worldwide” statistical maxima and minima of the following geological criteria disclose an episodic correlation with the variation of G and the rates of change of G during the past 350 million years, as specified by this galactic model. It is possible to interpret this correlation in terms of accepted geological principles and concepts in most cases. The following geological phenomena are considered in this comparison of the galactic and geological time‐scales for the past 350 million years.

Period boundaries of the stratigraphic system  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号