首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5197篇
  免费   163篇
  国内免费   19篇
测绘学   184篇
大气科学   650篇
地球物理   1206篇
地质学   2038篇
海洋学   259篇
天文学   808篇
综合类   15篇
自然地理   219篇
  2021年   68篇
  2020年   71篇
  2019年   59篇
  2018年   137篇
  2017年   148篇
  2016年   231篇
  2015年   143篇
  2014年   212篇
  2013年   276篇
  2012年   131篇
  2011年   194篇
  2010年   204篇
  2009年   261篇
  2008年   172篇
  2007年   167篇
  2006年   151篇
  2005年   130篇
  2004年   109篇
  2003年   104篇
  2002年   126篇
  2001年   103篇
  2000年   87篇
  1999年   94篇
  1998年   95篇
  1997年   83篇
  1996年   70篇
  1995年   76篇
  1994年   92篇
  1993年   46篇
  1992年   45篇
  1991年   52篇
  1990年   58篇
  1989年   50篇
  1988年   42篇
  1987年   50篇
  1986年   38篇
  1985年   55篇
  1984年   58篇
  1983年   67篇
  1982年   55篇
  1981年   53篇
  1980年   45篇
  1979年   39篇
  1978年   69篇
  1977年   37篇
  1976年   42篇
  1975年   50篇
  1974年   58篇
  1973年   61篇
  1962年   30篇
排序方式: 共有5379条查询结果,搜索用时 15 毫秒
151.
Using a zonally averaged, one-hemispheric numerical model of the thermohaline circulation, the dependence of the overturning strength on the surface equator-to-pole density difference is investigated. It is found that the qualitative behavior of the thermohaline circulation depends crucially on the nature of the small-scale vertical mixing in the interior of the ocean. Two different representations of this process are considered: constant vertical diffusivity and the case where the rate of mixing energy supply is taken to be a fixed quantity, implying that the vertical diffusivity decreases with increasing stability of the water column. When the stability-dependent diffusivity parameterization is applied, a weaker density difference is associated with a stronger circulation, contrary to the results for a fixed diffusivity. A counterintuitive consequence of the stability-dependent mixing is that the poleward atmospheric freshwater flux, which acts to reduce the thermally imposed density contrast, strengthens the thermally dominated circulation and its attendant poleward heat transport. However, for a critical value of the freshwater forcing, the thermally dominated branch of steady states becomes unstable, and is succeeded by strongly time-dependent states that oscillate between phases of forward and partly reversed circulation. When a constant vertical diffusivity is employed, on the other hand, the thermally dominated circulation is replaced by a steady salinity-dominated state with reversed flow. Thus in this model, the features of the vertical mixing are essential for the steady-state response to freshwater forcing as well as for the character of flow that is attained when the thermally dominated circulation becomes unstable.Responsible Editor: Jin-Song von Storch  相似文献   
152.
Anisotropic material properties are usually neglected during inversions for source parameters of earthquakes. In general anisotropic media, however, moment tensors for pure-shear sources can exhibit significant non-double-couple components. Such effects may be erroneously interpreted as an indication for volumetric changes at the source. Here we investigate effects of anisotropy on seismic moment tensors and radiation patterns for pure-shear and tensile-type sources. Anisotropy can significantly influence the interpretation of the source mechanisms. For example, the orientation of the slip within the fault plane may affect the total seismic moment. Also, moment tensors due to pure-shear and tensile faulting can have similar characteristics depending on the orientation of the elastic tensor. Furthermore, the tensile nature of an earthquake can be obscured by near-source anisotropic properties. As an application, we consider effects of inhomogeneous anisotropic properties on the seismic moment tensor and the radiation patterns of a selected type of micro-earthquakes observed in W-Bohemia. The combined effects of near-source and along-path anisotropy cause characteristic amplitude distortions of the P, S1 and S2 waves. However, the modeling suggests that neither homogeneous nor inhomogeneous anisotropic properties alone can explain the observed large non-double-couple components.The results also indicate that a correct analysis of the source mechanism, in principle, is achievable by application of anisotropic moment tensor inversion.  相似文献   
153.
We present a complete set of stability constants (SO4β1) for the monosulfato-complexes of yttrium and the rare earth elements (YREE), except Pm, at I = 0.66 m and t = 25°C, where SO4β1 = [MSO4+] × [M3+]−1[SO42−]−1 (M ≡ YREE and brackets indicate free ion concentrations on the molal scale). Stability constants were determined by investigating the solubility of BaSO4 in concentrated aqueous solutions of MCl3. This is the first complete set to be published in more than 30 years.The resulting SO4β1 pattern is very similar in shape to one reported by de Carvalho and Choppin (1967a) (I = 2 mol/L; t = 25°C) that has been largely ignored. Stability constants vary little between La and Sm, but display a weak maximum at Eu. Between Eu and Lu, SO4β1 decreases by 0.2 log units, substantially exceeding the ±0.02 log unit average analytical precision. The stability constant for Y is approximately equal to that for Er. Our SO4β1 pattern is consequently distinctly different from the consensus pattern, based on a single data set from 1954, which is essentially flat, with a range of only 0.07 log units between the lowest and highest SO4β1 values within the lanthanide series (excluding Y).Values of SO4β1 obtained in this work, in conjunction with the ion-pairing model of Millero and Schreiber (1982), allow prediction of SO4β1 between 0 and 1 m ionic strength. These results are used to assess both the absolute and relative extent of YREE sulfate complexation in acidic, sulfate-rich waters.  相似文献   
154.
Gönnert  Gabriele 《Natural Hazards》2004,32(2):211-218
Computations of storm surges during the 20th century needs to incorporate globalwarming of about 0.6 °C ± 0.2 °C (IPCC, 2001). In order totake this global warming into consideration, the development of all storm surgesoccurred during the 20th century have been analysed. The study comprises determiningto what degree the storm surge curve and storm surge level depend on each other. Thisfact can be used to calculate a maximum storm surge curve and each single storm surgeevent can be summarised. The tendency of the surge and wind parameters do not showthat this maximum storm surge levels in the 20th century will occur earlier than predicted, however, the global warming of 0.6 °C will extend the duration of the mean storm surge curve.  相似文献   
155.
156.
A high resolution (3–8 km grid), 3D numerical ocean model of the West Caribbean Sea (WCS) is used to investigate the variability and the forcing of flows near the Meso-American Barrier Reef System (MBRS) which runs along the coasts of Mexico, Belize, Guatemala and Honduras. Mesoscale variations in velocity and temperature along the reef were found in seasonal model simulations and in observations; these variations are associated with meandering of the Caribbean current (CC) and the propagation of Caribbean eddies. Diagnostic calculations and a simple assimilation technique are combined to infer the dynamically adjusted flow associated with particular eddies. The results demonstrate that when a cyclonic eddy (negative sea surface height anomaly (SSHA)) is found near the MBRS the CC shifts offshore, the cyclonic circulation in the Gulf of Honduras (GOH) intensifies, and a strong southward flow results along the reef. However, when an anticyclonic eddy (positive SSHA) is found near the reef, the CC moves onshore and the flow is predominantly westward across the reef. The model results help to explain how drifters are able to propagate in a direction opposite to the mean circulation when eddies cause a reversal of the coastal circulation. The effect of including the Meso-American Lagoon west of the Belize Reef in the model topography was also investigated, to show the importance of having accurate coastal topography in determining the variations of transports across the MBRS. The variations found in transports across the MBRS (on seasonal and mesoscale time scales) may have important consequences for biological activities along the reef such as spawning aggregations; better understanding the nature of these variations will help ongoing efforts in coral reef conservation and maintaining the health of the ecosystem in the region.  相似文献   
157.
Global ocean circulation models usually lack an adequate consideration of high-latitude processes due to a limited model domain or insufficient resolution. Without the processes in key areas of the global thermohaline circulation, the characteristics and flow of deep and bottom waters cannot be modeled realistically. In this study, a high-resolution (~20 km) ocean model focused on the Weddell Sea sector of the Southern Ocean is combined with a low-resolution (2° × 2°) global ocean model applying the state estimation technique. Temperature, salinity, and velocity data on two Weddell Sea sections from the regional model are used as constraints for the large-scale model in addition to satellite altimetry and sea-surface temperatures. The differences between the model with additional constraints and without document that the Weddell Sea circulation exerts significant influence on the course of the Antarctic Circumpolar Current with consequences for Southern Ocean water mass characteristics and the spreading of deep and bottom waters in the South Atlantic. Furthermore, a warming trend in the period 1993–2001 was found in the Weddell Sea and adjacent basins in agreement with float measurements in the upper Southern Ocean. Teleconnections to the North Atlantic are suggested but need further studies to demonstrate their statistical significance.  相似文献   
158.
Our aim is the prediction of the accumulation of strain and/or stress under cyclic loading with many (thousands to millions) cycles and relatively small amplitudes. A high-cycle constitutive model is used for this purpose. Its formulas are based on numerous cyclic tests. This paper describes drained tests with triaxial compression and uniaxial stress cycles. The influence of the strain amplitude, the average stress, the density, the cyclic preloading history and the grain size distribution on the direction and the intensity of strain accumulation is discussed.  相似文献   
159.
160.
Twenty‐six sites with remnants of gravelly saprolites (grus) have been located in southeast Sweden. Joint block hills (castle kopjes) and steep rock walls with weathered joints as well as rounded boulders are documented to have an origin in deep weathering and subsequent stripping of saprolites. The saprolite remnants and landforms result from the fragmentation of the re‐exposed sub‐Cambrian peneplain along fracture systems. Only shallow saprolites occur on the elevated intact parts of the sub‐Cambrian peneplain, while saprolites up to 20 m thick are encountered in areas where the sub‐Cambrian peneplain is fractured and dissected. Neogene uplift with reactivation of the weathering system is thought to be the main cause of saprolite formation. Deep weathering is thus judged to have been the major agent of landform formation in the study area, while glacial and glaciofluvial erosion has contributed mainly by stripping saprolites, detaching corestones, and plucking joint blocks along weathered joints.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号