首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   388篇
  免费   25篇
  国内免费   4篇
测绘学   12篇
大气科学   57篇
地球物理   113篇
地质学   124篇
海洋学   22篇
天文学   62篇
自然地理   27篇
  2021年   5篇
  2020年   7篇
  2019年   7篇
  2018年   9篇
  2017年   16篇
  2016年   17篇
  2015年   8篇
  2014年   20篇
  2013年   22篇
  2012年   16篇
  2011年   22篇
  2010年   15篇
  2009年   17篇
  2008年   15篇
  2007年   20篇
  2006年   15篇
  2005年   14篇
  2004年   13篇
  2003年   10篇
  2002年   10篇
  2001年   8篇
  2000年   7篇
  1999年   12篇
  1998年   9篇
  1997年   6篇
  1996年   10篇
  1995年   2篇
  1994年   2篇
  1993年   7篇
  1992年   7篇
  1991年   8篇
  1990年   7篇
  1989年   1篇
  1988年   1篇
  1987年   5篇
  1986年   3篇
  1985年   6篇
  1984年   5篇
  1983年   5篇
  1982年   3篇
  1981年   4篇
  1979年   3篇
  1978年   2篇
  1977年   2篇
  1976年   4篇
  1975年   3篇
  1974年   3篇
  1973年   1篇
  1971年   1篇
  1967年   1篇
排序方式: 共有417条查询结果,搜索用时 15 毫秒
411.
The geologic and geomorphic template of Grand Canyon influences patterns in the archaeological record, including sites where apparent increases in erosion may be related to Glen Canyon Dam. To provide geoarchaeological context for the Colorado River corridor and such issues, we explore first‐order trends in a database of field observations and topographic metrics from 227 cultural sites. The patterns revealed may be expected in other river‐canyon settings of management concern. The spatial clustering of sites along the river follows variations in width of the valley bottom and the occurrence of alluvial terraces and debris fans, linking to bedrock controls. In contrast, the pattern of more Formative (Ancestral Puebloan, 800–1250 A.D.) sites in eastern Grand Canyon and Protohistoric (1250–1776 A.D.) sites in western Grand Canyon does not follow any evident geomorphic trends. In terms of site stability, wider reaches with more terrace and debris fan landforms host a disproportionate number of sites with acute erosion. This links most directly to weak alluvial substrates, and the primary erosion process is gullying with diffusive‐creep processes also pervasive. Although Glen Canyon Dam does not directly influence these erosion processes, overall sediment depletion and the loss of major flooding leaves erosion unhampered along the river corridor.  相似文献   
412.
A workflow is described to estimate specific storage (S s) and hydraulic conductivity (K) from a profile of vibrating wire piezometers embedded into a regional aquitard in Australia. The loading efficiency, compressibility and S s were estimated from pore pressure response to atmospheric pressure changes, and K was estimated from the earliest part of the measurement record following grouting. Results indicate that S s and K were, respectively, 8.8?×?10?6 to 1.2?×?10?5 m?1 and 2?×?10?12 m s?1 for a claystone/siltstone, and 4.3?×?10?6 to 9.6?×?10?6 m?1 and 1?×?10?12 to 5?×?10?12 m s?1 for a thick mudstone. K estimates from the pore pressure response are within one order of magnitude when compared to direct measurement in a laboratory and inverse modelled flux rates determined from natural tracer profiles. Further analysis of the evolution and longevity of the properties of borehole grout (e.g. thermal and chemical effects) may help refine the estimation of formation hydraulic properties using this workflow. However, the convergence of K values illustrates the benefit of multiple lines of evidence to support aquitard characterization. An additional benefit of in situ pore pressure measurement is the generation of long-term data to constrain groundwater flow models, which provides a link between laboratory scale data and the formation scale.  相似文献   
413.
Niche models applied in the context of future climate change predict that as regional temperatures increase, the distribution of tropical species will shift poleward. While range expansions have been documented for a number of species, there is limited information on the ecological impacts of shifts on native species. Recently, abundances of tropically-associated gray snapper (Lutjanus griseus) and lane snapper (Lutjanus synagris) have increased in seagrass nurseries in the northern Gulf of Mexico (GOM), concurrent with regional increases in sea surface temperature. We investigated effects of increased abundances of these species on abundance and growth of pinfish (Lagodon rhomboides), the dominant native species. Because juvenile pinfish and snappers share common prey, predators, and habitat, the high degree of niche overlap suggests an equally high potential for competition. We used a multiple before–after control impact design to determine whether increased snapper abundances significantly affected abundance or growth of pinfish. Trawl surveys at six locations in the northern GOM in summer and fall 2010 were used to calculate pinfish and snapper abundances. We identified three locations with high snapper abundances and three locations with no snapper and compared pinfish abundance and otolith-determined growth rates in these locations before and after snapper recruitment. Paired t tests and two-way analysis of variance revealed no significant differences in pinfish abundance or growth in the presence of snappers compared to locations and seasons without snappers. We conclude that range expansions of tropically associated snappers have had no significant effect on abundance or growth of native pinfish in northern GOM seagrass habitats.  相似文献   
414.
Market squid (Doryteuthis opalescens) are ecologically and economically important to the California Current Ecosystem, but populations undergo dramatic fluctuations that greatly affect food web dynamics and fishing communities. These population fluctuations are broadly attributed to 5–7‐years trends that can affect the oceanography across 1,000 km areas; however, monthly patterns over kilometer scales remain elusive. To investigate the population dynamics of market squid, we analysed the density and distribution of paralarvae in coastal waters from San Diego to Half Moon Bay, California, from 2011 to 2016. Warming local ocean conditions and a strong El Niño event drove a dramatic decline in relative paralarval abundance during the study period. Paralarval abundance was high during cool and productive La Niña conditions from 2011 to 2013, and extraordinarily low during warm and eutrophic El Niño conditions from 2015 to 2016 over the traditional spawning grounds in Southern and Central California. Market squid spawned earlier in the season and shifted northward during the transition from cool to warm ocean conditions. We used a general additive model to assess the variability in paralarval density and found that sea surface temperature (SST), zooplankton displacement volume, the log of surface chlorophyll‐a, and spatial and temporal predictor variables explained >40% of the deviance (adjusted r2 of .29). Greatest paralarval densities were associated with cool SST, moderate zooplankton concentrations and low chlorophyll‐a concentrations. In this paper we explore yearly and monthly trends in nearshore spawning for an economically important squid species and identify the major environmental influences that control their population variability.  相似文献   
415.
Coastal sector impacts from sea level rise (SLR) are a key component of the projected economic damages of climate change, a major input to decision-making and design of climate policy. Moreover, the ultimate global costs to coastal resources will depend strongly on adaptation, society’s response to cope with the local impacts. This paper presents a new open-source optimization model to assess global coastal impacts from SLR from the perspective of economic efficiency. The Coastal Impact and Adaptation Model (CIAM) determines the optimal strategy for adaptation at the local level, evaluating over 12,000 coastal segments, as described in the DIVA database (Vafeidis et al. 2006), based on their socioeconomic characteristics and the potential impacts of relative sea level rise and uncertain sea level extremes. A deterministic application of CIAM demonstrates the model’s ability to assess local impacts and direct costs, choose the least-cost adaptation, and estimate global net damages for several climate scenarios that account for both global and local components of SLR (Kopp et al. 2014). CIAM finds that there is large potential for coastal adaptation to reduce the expected impacts of SLR compared to the alternative of no adaptation, lowering global net present costs through 2100 by a factor of seven to less than $1.7 trillion, although this does not include initial transition costs to overcome an under-adapted current state. In addition to producing aggregate estimates, CIAM results can also be interpreted at the local level, where retreat (e.g., relocate inland) is often a more cost-effective adaptation strategy than protect (e.g., construct physical defenses).  相似文献   
416.
The response of a shallow subsurface anomaly to an SH wave with source on the surface is computed by using a two dimensional finite element technique. It is demonstrated that the effects of the depth and relative material composition of the anomaly can be identified in the power spectra. The behaviour of the response agrees with principles established from investigating cases where the SH wave is incident from below.  相似文献   
417.
A method has been developed for the rapid chemical separation and highly reproducible analysis of the rare earth elements (REE) by isotope dilution analysis by means of a multiple collector inductively coupled plasma mass spectrometer (MC-ICP-MS). This technique is superior in terms of the analytical reproducibility or rapidity of analysis compared with quadrupole ICP-MS or with thermal ionization mass spectrometric isotope dilution techniques. Samples are digested by standard hydrofluoric-nitric acid-based techniques and spiked with two mixed spikes. The bulk REE are separated from the sample on a cation exchange column, collecting the middle-heavy and light REE as two groups, which provides a middle-heavy REE cut with sufficient separation of the light from the heavier REE to render oxide interferences trivial, and a Ba-free light REE cut. The heavy (Er-Lu), middle (Eu-Gd), and light REE (La-Eu) concentrations are determined by three short (1 to 2 min) analyses with a CETAC Aridus desolvating nebulizer introduction system. Replicate digestions of international rock standards demonstrate that concentrations can be reproduced to <1%, which reflects weighing errors during digestion and aliquotting as inter-REE ratios reproduce to ≤0.2% (2 SD). Eu and Ce anomalies reproduce to <0.15%. In addition to determining the concentrations of polyisotopic REE by isotope dilution analysis, the concentration of monoisotopic Pr can be measured during the light REE isotope dilution run, by reference to Pr/Ce and Pr/Nd ratios measured in a REE standard solution. Pr concentrations determined in this way reproduce to <1%, and Pr/REE ratios reproduce to <0.4%. Ce anomalies calculated with La and Pr also reproduce to <0.15% (2 SD). The precise Ce (and Eu) anomaly measurements should allow greater use of these features in studying the recycling of materials with these anomalies into the mantle, or redox-induced effects on the REE during recycling and dehydration of oceanic lithosphere, partial melting, metamorphism, alteration, or sedimentation processes. Moreover, this technique consumes very small amounts (subnanograms) of the REE and will allow precise REE determinations to be made on much smaller samples than hitherto possible.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号