首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   1篇
大气科学   2篇
地球物理   6篇
地质学   5篇
海洋学   1篇
天文学   14篇
自然地理   1篇
  2016年   2篇
  2014年   2篇
  2009年   1篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1994年   2篇
  1985年   1篇
  1984年   1篇
  1983年   4篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1973年   1篇
排序方式: 共有29条查询结果,搜索用时 15 毫秒
11.
Four separable effects of atmospheric turbulence on average refraction angles in occultation experiments are derived from a simplified analysis, and related to more general formulations by B.S. Haugstad. The major contributors are shown to be due to gradients in height of the strength of the turbulence, and the sense of the resulting changes in refraction angles is explained in terms of Fermat's principle. Because the results of analyses of such gradient effects by W. B. Hubbard and J. R. Jokipii are expressed in other ways, a special effort is made to compare all of the predictions on a common basis. We conclude that there are fundamental differences, and use arguments based on energy conservation and Fermat's principle to help characterize the discrepancies.  相似文献   
12.
13.
The objective of this study is to describe how a monsoon depression in the western North Pacific, which typically has a diameter of 1000 km, may be transitioned into a tropical cyclone with an inner core of strong winds and deep convection on the order of 100 km. Our previous case study of the pre-Typhoon Man-Yi monsoon depression formation is extended to show that the same cross-equatorial airstream continued and led to enhanced equatorial westerlies on the equatorward side of the pre-Man-Yi circulation, and a surge in the trade easterlies was also present on the poleward side. As these surges in the near-equatorial flow are inertially unstable, inward-directed wave-activity fluxes then led to flux convergence over the eastern vorticity maximum of the monsoon depression, which resulted in a scale contraction to that of a pretropical cyclone seedling. Eight case studies of the transitions of monsoon depressions during 2009 are presented that document persistent inward-directed wave-activity fluxes over a vorticity maximum within the monsoon depression is a key feature of each transition. In some transitions, the same cross-equatorial airstream as led to the monsoon depression formation continues as the primary airstream, and in other transitions another airstream to the west or enhanced tropical easterlies become the primary airstream. Analysis of 10 non-transitioning monsoon depressions during 2009 indicated the airstream wave-activity flux did not persist after the formation of the monsoon depression. In another 11 non-transitioning monsoon depressions, the inward-directed wave-activity flux was small and no region of wave-activity flux convergence was associated with the vorticity maximum in the monsoon depression.  相似文献   
14.
Two recent papers, one by A.J. Kliore, C. Elachi, I.R. Patel, and J.B. Cimeno, Icarus37, 51-2- 72, 1979, and one by B. Lipa and G.L. Tyler, Icarus39, 192–208, 1979, reach fundamentally different conclusions concerning microwave absorption in the atmosphere of Venus, even though they are based on the same Mariner 10 radio occultation data. The Lipa and Tyler results are in general agreement with earlier Mariner 5 measurements analyzed by G. Fjeldbo, A.J. Kliore, and V.R. Eshleman, Astron. J.76, 123–140, 1971. We find that in the Kliore et al. treatment: (1) the effects of measurements and analysis uncertainties in the derived values of absorption are underestimated; (2) an incorrect formula is used for computation of the refractive effects needed to determine the absorption; (3) detailed features of a derived profile of absorption would have been created in an optically thin region by known motions of the spacecraft antenna, if its axial direction were biased about 0.5° from the computed directions; and (4) this particular angular bias is consistent with other available information about an apparent residual difference between true and reconstructed antenna pointing directions. We conclude that: (1) there is no credible evidence for measurable microwave absorption in the atmosphere of Venus at heights greater than 55 km for any of the wavelengths that have been used in radio occultation experiments, even though Kliore et al. indicate that there are significant amounts up to at least 70 km for both Mariner 10 wavelengths (13 and 3.6 cm); (2) absorption in the region 35 to 50 km has been reasonably well determined from the two concordant Mariner 5 and 10 analyses, but only at one wavelength (13 cm); and (3) improved instrumentation and careful planning and analysis will be required for the radio occultation technique to realize its potential for the study of absorbing regions in the atmospheres of Venus and the major planets.  相似文献   
15.
The results of a hydrological analysis that was conducted as part of a larger, multifaceted, collaborative effort to quantify ecosystem functions in watersheds subjected to land‐use and land‐cover change are presented. The primary goal of the study was to determine whether a small watershed in the Appalachian region (USA) that was recently subjected to surface mining and reclamation practices produces stormflow responses to rain events that are different from those produced by a nearby reference watershed covered by young, second‐growth forest. Water balances indicated that runoff yields did not vary significantly between the two watersheds on an annual basis. Statistically significant differences (p?0·05) in runoff responses were observed on an event basis, however, with the mined/reclaimed watershed producing, on average (a) higher storm runoff coefficients (2·5×), (b) greater total storm runoff (3×), and (c) higher peak hourly runoff rates (2×) when compared with the reference watershed. Results of a unit hydrograph analysis also showed, unexpectedly, that the modelled unit responses of the two watersheds to effective rainfall pulses were similar, despite the noted differences in land cover. Differences in stormflow responses were thus largely explained by dramatic reductions in cumulative rates of rainfall abstraction (measured using infiltrometers) attributable to soil compaction during land reclamation. Additional field hydrological measurements on other mined watersheds will be needed to generalize our results, as well as to understand and predict the cumulative hydrological impacts of widespread surface mining in larger watersheds and river basins. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
16.
Late Quaternary histories of two North American desert biomes—C4 grasslands and C3 shrublands—are poorly known despite their sensitivity and potential value in reconstructing summer rains and winter temperatures. Plant macrofossil assemblages from packrat midden series in the northern Chihuahuan Desert show that C4 grasses and annuals typical of desert grassland persisted near their present northern limits throughout the last glacial–interglacial cycle. By contrast, key C3 desert shrubs appeared somewhat abruptly after 5000 cal. yr BP. Bioclimatic envelopes for select C4 and C3 species are mapped to interpret the glacial–interglacial persistence of desert grassland and the mid‐to‐late Holocene expansion of desert shrublands. The envelopes suggest relatively warm Pleistocene temperatures with moist summers allowed for persistence of C4 grasses, whereas winters were probably too cold (or too wet) for C3 desert shrubs. Contrary to climate model results, core processes associated with the North American Monsoon and moisture transport to the northern Chihuahuan Desert remained intact throughout the last glacial–interglacial cycle. Mid‐latitude effects, however, truncated midsummer (July–August) moisture transport north of 35° N. The sudden expansion of desert shrublands after 5000 cal. yr BP may be a threshold response to warmer winters associated with increasing boreal winter insolation, and enhanced El Niño–Southern Oscillation variability. Published in 2006 by John Wiley & Sons, Ltd.  相似文献   
17.
The radio occultation technique is developed here as a new method for the study of the physical properties of planetary ring systems. Particular reference is made to geometrical and system characteristics of the Voyager dual-wavelength (13 and 3.6 cm) experiment at Saturn. The rings are studied based on the perturbations they introduce in the spectrum of coherent sinusoidal radio signals transmitted through the rings from a spacecraft in the vicinity of the planet to Earth. Two separate signal components are identified in a perturbed spectrum: a sinusoidal component that remains coherent with the incident signal but is reduced in intensity and possibly changed in phase, and a Doppler-broadened incoherent component whose spectral shape and strength are determined by the occultation geometry and the radial variation of the near-forward radar cross section of illuminated ringlets. Both components are derived in terms of the physical ring properties starting from a conventional radar formulation of the problem of single scattering on ensembles of discrete scatterers, which is then generalized to include near-forward multiple scattering. The latter is accomplished through special solutions of the equation of transfer for particles that are larger than the wavelength. When the occultation geometry is optimized, contributions of an individual ringlet to a perturbed spectrum can be identified with radial resolution on the order of a few kilometers for the coherent component and a few hundred kilometers for the incoherent one, thus permitting high-resolution reconstruction of the radial profile of the optical depth, as well as reconstruction of the radar cross section of resolved ringlets. Simultaneous estimates of the optical depth and radar cross section of a ringlet at 3.6 cm-gl allow separation of its aerial density and particle size, if the particles are of known material and form a narrow size distibution with radii greater than several tens of centimeters. This separation is also achieved for radii ?10 cm from differential effects on the coherent signal parameters at 3.6- and 13-cm wavelengths. For the more general case of a broad size distribution modeled by a power law, the absence of differential effects on the coherent signal binds the minimum size to be ?10 cm. In this case, the radius inferred from an estimate of the radar cross section represents an equivalent radius, which is strongly controlled by the maximum size of the distribution provided that the power index is in the range 3 to 4. On the other hand, detection of differential coherent signal extinction determines an upper bound on the maximum size and a lower bound on the power index, assuming water-ice particles. These bounds, together with an inferred equivalent size, constrain the size distribution at both its small and large ends.  相似文献   
18.
Two coherently related radio signals transmitted from Voyager 1 at wavelengths of 13 cm (S-band) and 3.6 cm (X-band) were used to probe the equatorial atmosphere of Titan. The measurements were conducted during the occultation of the spacecraft by the satellite on November 12, 1980. An analysis of the differential dispersive frequency measurements did not reveal any ionization layers in the upper atmosphere of Titan. The resolution was approximately 3 × 103 and 5 × 103 electrons/cm3 near the evening and morning terminators, respectively. Abrupt signal changes observed at ingress and egress indicated a surface radius of 2575.0 ± 0.5 km, leading to a mean density of 1.881 ± 0.002 g cm?3 for the satellite. The nondispersive data were used to derive profiles in height of the gas refractivity and microwave absorption in Titan's troposphere and stratosphere. No absorption was detected; the resolution was about 0.01 dB/km at the 13-cm wavelength. The gas refractivity data, which extend from the surface to about 200 km altitude, were interpreted in two different ways. In the first, it is assumed that N2 makes up essentially all of the atmosphere, but with very small amounts of CH4 and other hydrocarbons also present. This approach yielded a temperature and pressure at the surface of 94.0 ± 0.7°K and 1496 ± 20 mbar, respectively. The tropopause, which was detected near 42 km altitude, had a temperature of 71.4 ± 0.5°K and a pressure of about 130 mbar. Above the tropopause, the temperature increased with height, reaching 170 ± 15°K near the 200-km level. The maximum temperature lapse rate observed near the surface (1.38 ± 0.10°K/km) corresponds to the adiabatic value expected for a dry N2 atmosphere—indicating that methane saturation did not occur in tbis region. Above the 3.5-km altitude level the lapse rate dropped abruptly to 0.9 ± 0.1°K/km and then decreased slowly with increasing altitude, crossing zero at the tropopause. For the N2 atmospheric model, the lapse rate transition at the 3.5-km level appears to mark the boundary between a convective region near the surface having the dry adiabatic lapse rate, and a higher stable region in radiative equilibrium. In the second interpretation of the refractivity data, it is assumed, instead, that the 3.5 km altitude level corresponds to the bottom of a CH4 cloud layer, and that N2 and CH4 are perfectly mixed below this level. These assumptions lead to an atmospheric model which below the clouds contains about 10% CH4 by number density. The temperature near the surface is about 95°K. Arguments concerning the temperature lapse rates computed from the radio measurements appear to favor models in which methane forms at most a limited haze layer high in the troposphere.  相似文献   
19.
The Coastal Storm Modeling System (CoSMoS) applies a predominantly deterministic framework to make detailed predictions (meter scale) of storm-induced coastal flooding, erosion, and cliff failures over large geographic scales (100s of kilometers). CoSMoS was developed for hindcast studies, operational applications (i.e., nowcasts and multiday forecasts), and future climate scenarios (i.e., sea-level rise + storms) to provide emergency responders and coastal planners with critical storm hazards information that may be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. The prototype system, developed for the California coast, uses the global WAVEWATCH III wave model, the TOPEX/Poseidon satellite altimetry-based global tide model, and atmospheric-forcing data from either the US National Weather Service (operational mode) or Global Climate Models (future climate mode), to determine regional wave and water-level boundary conditions. These physical processes are dynamically downscaled using a series of nested Delft3D-WAVE (SWAN) and Delft3D-FLOW (FLOW) models and linked at the coast to tightly spaced XBeach (eXtreme Beach) cross-shore profile models and a Bayesian probabilistic cliff failure model. Hindcast testing demonstrates that, despite uncertainties in preexisting beach morphology over the ~500 km alongshore extent of the pilot study area, CoSMoS effectively identifies discrete sections of the coast (100s of meters) that are vulnerable to coastal hazards under a range of current and future oceanographic forcing conditions, and is therefore an effective tool for operational and future climate scenario planning.  相似文献   
20.
Radio occultation observations of Saturn's rings with Voyager 1 provided independent measurements of complex (amplitude and phase) microwave extinction and near-forward scattering cross section of the rings at wavelengths (λ) of 3.6 and 13 cm. The ring opening was 5.9°. The normal microwave opacities, τ[3.6] and τ[13], provide a measure of the total cross-sectional area of particles larger than about 1 and 4 cm radius, respectively. Ring C exhibits gently undulating (~ 1000 km) structure of normal opacity τ[3.6] ? 0.25 except for several narrow imbedded ringlets of less than about 100 km width and τ[3.6] ~ 0.5 to 1.0. The normalized differential opacity Δτ/τ[3.6], where Δτ = τ[3.6] ? τ[13], is about 0.3 over most of ring C, indicating a substantial fraction of centimeter-size particles. Some narrow imbedded ringlets show marked increases in Δτ/τ[3.6] near their edges, implying an enhancement in the relative population of centimeter-size and smaller particles at those locations. In the Cassini division, several sharply defined gaps separate regions of opacity τ ~ 0.08 and τ ~ 0.25; the opacity in the Cassini Division appears to be nearly independent of λ. The boundary features at the outer edges of ring C and the Cassini Division are remarkably similar in width and opacity profile, suggesting a similar dynamical control. Ring A appears to be nearly homogeneous over much of its width with 0.6 < τ[3.6] < 0.8 but with considerable thickening, to τ[3.6] ~ 1.0, near its inner boundary with the Cassini division. Normalized differential opacity decreases from ~0.3 at the inner and outer edges of ring A to Δτ/τ[3.6] ~ 0 at a point about one-third of the distance from the inner edge to the outer. The inner one-fourth of ring B has τ[3.6] ~ 1.0, except very near the boundary with ring C, where it is greater. The outer three-fourths of ring B has τ[3.6] ? 1.2. The differential opacity for the inner one-fourth of ring B is Δτ/τ[3.6] ~ 0.15. There are no gaps in ring B exceeding about 2 km in width. Ring F was observed at 3.6 cm as a single ringlet of radial width ? 2 km, but was not detected in 13 cm data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号