首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121篇
  免费   6篇
测绘学   6篇
大气科学   10篇
地球物理   20篇
地质学   49篇
海洋学   16篇
天文学   8篇
综合类   1篇
自然地理   17篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2017年   5篇
  2016年   4篇
  2015年   4篇
  2014年   6篇
  2013年   9篇
  2012年   7篇
  2011年   13篇
  2010年   6篇
  2009年   11篇
  2008年   7篇
  2007年   7篇
  2006年   7篇
  2005年   3篇
  2004年   5篇
  2003年   3篇
  2002年   5篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1998年   2篇
  1996年   5篇
  1993年   2篇
  1992年   1篇
  1988年   1篇
  1986年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有127条查询结果,搜索用时 922 毫秒
31.
32.
The effects of deep convection on the potential for forming ozone (ozone production potential) in the free troposphere have been simulated for regions where the trace gas composition is influenced by biomass burning. Cloud dynamical and photochemical simulations based on observations in 1980 and 1985 Brazilian campaigns form the basis of a sensitivity study of the ozone production potential under differing conditions. The photochemical fate of pollutants actually entrained in a cumulus event of August 1985 during NASA/GTE/ABLE 2A (Case 1) is compared to photochemical ozone production that could have occurred if the same storm had been located closer to regions of savanna burning (Case 2) and forest burning (Case 3). In each case studied, the ozone production potential is calculated for a 24-hour period following convective redistribution of ozone precursors and compared to ozone production in the absence of convection. In all cases there is considerably more ozone formed in the middle and upper troposphere when convection has redistributed NOx, hydrocarbons and CO compared to the case of no convection.In the August 1985 ABLE 2A event, entrainment of a layer polluted with biomass burning into a convective squall line changes the free tropospheric cloud outflow column (5–13 km) ozone production potential from net destruction to net production. If it is assumed that the same cloud dynamics occur directly over regions of savanna burning, ozone production rates in the middle and upper troposphere are much greater. Diurnally averaged ozone production following convection may reach 7 ppbv/day averaged over the layer from 5–13 km-compared to typical free tropospheric concentrations of 25–30 ppbv O3 during nonpolluted conditions in ABLE 2A. Convection over a forested region where isoprene as well as hydrocarbons from combustion can be transported into the free troposphere leads to yet higher amounts of ozone production.  相似文献   
33.
Output from a three‐dimensional numerical flow model (SSIIM) is used in conjunction with high‐resolution topographic and velocity data to assess such models for eco‐hydraulic applications in river channel design and habitat appraisal. A new methodology for the comparison between field measurement and model output is detailed. This involves a comparison between conventional goodness‐of‐fit approaches applied to a spatially structured (riffle and pool) sample of model and field data, and a ‘relaxation’ method based upon the spatial semivariance of model/field departures. Conventional assessment indicates that the model predicts point‐by‐point velocity characteristics on a 0·45 m mesh to within ±0·1 m s−1 over 80% of the channel area at low flow, and 50% of the area at high in‐bank flow. When a relative criterion of model fit is used, however, the model appears to perform less well: 60–70% of channel area has predicted velocities that depart from observed velocities by more than 10%. Regression analysis of observed and predicted velocities gives more cause for optimism, but all of these conventional indicators of goodness of fit neglect important spatial characteristics of model performance. Spatial semivariance is a means of supplementing model appraisal in this respect. In particular, using the relaxation approach, results are greatly improved: at a high in‐bank flow, the model results match field measurements to within 0·1 m s−1 for more than 95% of the total channel area, provided that model and field comparisons are allowed within a radius of approximately 1 m from the original point of measurement. It is suggested that this revised form of model assessment is of particular relevance to eco‐hydraulic applications, where some degree of spatial and temporal dynamism (or uncertainty) is a characteristic. The approach may also be generalized to other environmental science modelling applications where the spatial attributes of model fits are of interest. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
34.
The lattice Boltzmann (LB) method is an efficient technique for simulating fluid flow through individual pores of complex porous media. The ease with which the LB method handles complex boundary conditions, combined with the algorithm’s inherent parallelism, makes it an elegant approach to solving flow problems at the sub-continuum scale. However, the realities of current computational resources can limit the size and resolution of these simulations. A major research focus is developing methodologies for upscaling microscale techniques for use in macroscale problems of engineering interest. In this paper, we propose a hybrid, multiscale framework for simulating diffusion through porous media. We use the finite element (FE) method to solve the continuum boundary-value problem at the macroscale. Each finite element is treated as a sub-cell and assigned permeabilities calculated from subcontinuum simulations using the LB method. This framework allows us to efficiently find a macroscale solution while still maintaining information about microscale heterogeneities. As input to these simulations, we use synchrotron-computed 3D microtomographic images of a sandstone, with sample resolution of 3.34 μm. We discuss the predictive ability of these simulations, as well as implementation issues. We also quantify the lower limit of the continuum (Darcy) scale, as well as identify the optimal representative elementary volume for the hybrid LB–FE simulations.  相似文献   
35.
36.
The Barcelona continental shelf, off the city of Barcelona (NE Spain), is a relatively narrow canyon-bounded shelf in the northwestern Mediterranean Sea. Three medium-size rivers (Tordera, Besós and Llobregat) and several ephemeral rivulets flow into this margin. Two main domains have been recognized in the Barcelona shelf: (i) a modern, river-influenced area, and (ii) a relict, sediment depleted area, both affected by a variety of human impacts. A detailed geomorphologic study based on multibeam bathymetry and backscatter data, high resolution seismic profiles, and surface sediment samples allowed mapping and interpreting the main distinctive seafloor features on the Barcelona shelf. Modern sedimentary features reveal that the Llobregat River is the main sediment source of the Barcelona prodeltaic shelf. High-discharge fluvial events result in the formation of suspended sediment plumes and sediment waves on the shelf floor. Relict (late Pleistocene–Holocene) sedimentary features reflect that an important shift occurred in the seashore direction between MIS 4 and MIS 2, and that recent neotectonic reactivation has created a set of seafloor faults. The Barcelona inner and middle shelf is severely impacted by anthropogenic activities such as the enlargement works of the Port of Barcelona, sewage pipes, dredging, anchoring and trawling.  相似文献   
37.
Different means to estimate changes in fire-hazard conditions in the Russian forests are analyzed in connection with climate changes. Climate data are considered as based upon standard observations and calculated characteristics obtained from the atmosphere-ocean general circulation models. Space distributions are calculated of changes in extreme conditions for fire hazard at the end of the 21st century, as compared with those at the end of the 20th century.  相似文献   
38.
River response to variations of periglacial climate in mid-latitude Europe   总被引:1,自引:0,他引:1  
The Last Glaciation was characterised by considerable changes in climate. Many European river basins reacted to these changes by initial incision and subsequent pattern change. Earlier research explained this by the time lag of vegetation development after a climatic change, which considerably affected the sediment load. However, since some river basins react differently, or do not react at all, this model needs to be refined. This paper deals with the fluvial evolution of several rivers in northern and central Europe during the Last Glaciation, and two of them, the Weiße Elster river in the Leipzig area and the Spree river in the Niederlausitz (Germany), are discussed in more detail. The vegetation cover on the floodplain, in combination with the presence of frozen ground, which affects the discharge characteristics, largely determines the river type. Nevertheless, when the sequences are compared, not only synchronous changes in fluvial development may be observed, but also distinct differences in fluvial development. By analysing the different rivers in their varying geomorphological settings, it appears that grain size, basin configuration and catchment size are important parameters also, which can determine whether a threshold is exceeded or not.  相似文献   
39.
Loading of subsurface salt during accumulation of fluvial strata can result in halokinesis and the growth of salt pillows, walls and diapirs. Such movement may eventually result in the formation of salt‐walled mini‐basins, whose style of architectural infill may be used to infer both the relative rates of salt‐wall growth and sedimentation and the nature of the fluvial‐system response to salt movement. The Salt Anticline Region of the Paradox Basin of SE Utah comprises a series of elongate salt‐walled mini‐basins, arranged in a NW‐trending array. The bulk of salt movement occurred during deposition of the Permian Cutler Group, a wedge of predominantly quartzo‐feldspathic clastic strata comprising sediment derived from the Uncompahgre Uplift to the NE. The sedimentary architecture of selected mini‐basin fills has been determined at high resolution through outcrop study. Mini‐basin centres are characterized by multi‐storey fluvial channel elements arranged into stacked channel complexes, with only limited preservation of overbank elements. At mini‐basin margins, thick successions of fluvial overbank and sheet‐like elements dominate in rim‐syncline depocentres adjacent to salt walls; many such accumulations are unconformably overlain by single‐storey fluvial channel elements that accumulated during episodes of salt‐wall breaching. The absence of gypsum clasts suggests that sediment influx was high, preventing syn‐sedimentary surface exposure of salt. Instead, fluvial breaching of salt‐generated topography reworked previously deposited sediments of the Cutler Group atop growing salt walls. Palaeocurrent data indicate that fluvial palaeoflow to the SW early in the history of basin infill was subsequently diverted to the W and ultimately to the NW as the salt walls grew to form topographic barriers. Late‐stage retreat of the Cutler fluvial system coincided with construction and accumulation of an aeolian system, recording a period of heightened climatic aridity. Aeolian sediments are preserved in the lees of some salt walls, demonstrating that halokinesis played a complex role in the differential trapping of sediment.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号