首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   383篇
  免费   14篇
  国内免费   1篇
测绘学   12篇
大气科学   35篇
地球物理   85篇
地质学   145篇
海洋学   57篇
天文学   31篇
综合类   1篇
自然地理   32篇
  2022年   1篇
  2021年   3篇
  2020年   5篇
  2019年   2篇
  2018年   10篇
  2017年   24篇
  2016年   12篇
  2015年   11篇
  2014年   13篇
  2013年   21篇
  2012年   14篇
  2011年   28篇
  2010年   21篇
  2009年   18篇
  2008年   21篇
  2007年   18篇
  2006年   17篇
  2005年   10篇
  2004年   26篇
  2003年   10篇
  2002年   8篇
  2001年   4篇
  2000年   3篇
  1999年   8篇
  1998年   4篇
  1997年   3篇
  1996年   9篇
  1995年   1篇
  1994年   5篇
  1993年   2篇
  1992年   3篇
  1991年   4篇
  1990年   3篇
  1989年   6篇
  1988年   1篇
  1987年   4篇
  1986年   6篇
  1985年   12篇
  1984年   8篇
  1983年   3篇
  1982年   4篇
  1981年   4篇
  1980年   3篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1970年   1篇
排序方式: 共有398条查询结果,搜索用时 15 毫秒
111.
Wilson  Matthew  Lane  Sandi  Mohan  Raghuveer  Sugg  Margaret 《Natural Hazards》2020,100(3):1013-1036
Natural Hazards - As the frequency of natural disasters increases, there has been an emphasis on vulnerability index creation studies. In this study, we test the validity of vulnerability indices...  相似文献   
112.
Silicate melt inclusions (MI) commonly provide the best record of pre-eruptive H2O and CO2 contents of subvolcanic melts, but the concentrations of CO2 and H2O in the melt (glass) phase within MI can be modified by partitioning into a vapor bubble after trapping. Melt inclusions may also enclose vapor bubbles together with the melt (i.e., heterogeneous entrapment), affecting the bulk volatile composition of the MI, and its post-entrapment evolution. In this study, we use numerical modeling to examine the systematics of post-entrapment volatile evolution within MI containing various proportions of trapped vapor from zero to 95 volume percent. Modeling indicates that inclusions that trap only a vapor-saturated melt exhibit significant decrease in CO2 and moderate increase in H2O concentrations in the melt upon nucleation and growth of a vapor bubble. In contrast, inclusions that trap melt plus vapor exhibit subdued CO2 depletion at equivalent conditions. In the extreme case of inclusions that trap mostly the vapor phase (i.e., CO2–H2O fluid inclusions containing trapped melt), degassing of CO2 from the melt is negligible. In the latter scenario, the large fraction of vapor enclosed in the MI during trapping essentially serves as a buffer, preventing post-entrapment modification of volatile concentrations in the melt. Hence, the glass phase within such heterogeneously entrapped, vapor-rich MI records the volatile concentrations of the melt at the time of trapping. These numerical modeling results suggest that heterogeneously entrapped MI containing large vapor bubbles represent amenable samples for constraining pre-eruptive volatile concentrations of subvolcanic melts.  相似文献   
113.
Iron powder, a promising dry-cleansing agent for oiled feathers where both the contaminant and the cleansing agent may be harvested magnetically, has been tested on the plumage of whole-bird models. The breast and back plumage of Mallard Duck (Anas platyrhynchos) and Little Penguin (Eudyptula minor) carcasses were patch-contaminated with commercial-grade engine oil, three different crude oils, and an oil/seawater emulsion. The plumage was then subjected to a magnetic cleansing protocol. The contaminant removal was assessed gravimetrically and was found to reflect the outcomes for a previously reported in vitro study using feather clusters. Between 92-98% of the contaminants, and effectively all of the cleansing agent, were removed from the feathers.  相似文献   
114.
Lags in vegetation response to greenhouse warming   总被引:12,自引:0,他引:12  
Fossil pollen in sediments documents vegetation responses to climatic changes in the past. Beech (Fagus grandifolia), with animal-dispersed seeds, moved across Lake Michigan or around its southern margin, becoming established in Wisconsin about 1000 years after populations were established in Michigan. Hemlock (Tsuga canadensis), with wind-dispersed seeds, colonized a 50,000 km2 area in northern Michigan between 6000 and 5000 years ago. These tree species extended ranges northward at average rates of 20–25 km per century. To track climatic changes in the future, caused by the greenhouse effect, however, their range limit would need to move northward 100 km per °C warming, or about 300 km per century, an order of magnitude faster than range extension in the past. Yet range extension in the future would be less efficient than in the past, because advance disjunct colonies have been extirpated by human disturbance, and because the seed source is reduced due to reductions in tree populations following logging. Many species of trees may not be able to disperse rapidly enough to track climate, and woodland herbs, which have less efficient seed dispersal mechanisms, may be in danger of extinction.  相似文献   
115.
Loading of subsurface salt during accumulation of fluvial strata can result in halokinesis and the growth of salt pillows, walls and diapirs. Such movement may eventually result in the formation of salt‐walled mini‐basins, whose style of architectural infill may be used to infer both the relative rates of salt‐wall growth and sedimentation and the nature of the fluvial‐system response to salt movement. The Salt Anticline Region of the Paradox Basin of SE Utah comprises a series of elongate salt‐walled mini‐basins, arranged in a NW‐trending array. The bulk of salt movement occurred during deposition of the Permian Cutler Group, a wedge of predominantly quartzo‐feldspathic clastic strata comprising sediment derived from the Uncompahgre Uplift to the NE. The sedimentary architecture of selected mini‐basin fills has been determined at high resolution through outcrop study. Mini‐basin centres are characterized by multi‐storey fluvial channel elements arranged into stacked channel complexes, with only limited preservation of overbank elements. At mini‐basin margins, thick successions of fluvial overbank and sheet‐like elements dominate in rim‐syncline depocentres adjacent to salt walls; many such accumulations are unconformably overlain by single‐storey fluvial channel elements that accumulated during episodes of salt‐wall breaching. The absence of gypsum clasts suggests that sediment influx was high, preventing syn‐sedimentary surface exposure of salt. Instead, fluvial breaching of salt‐generated topography reworked previously deposited sediments of the Cutler Group atop growing salt walls. Palaeocurrent data indicate that fluvial palaeoflow to the SW early in the history of basin infill was subsequently diverted to the W and ultimately to the NW as the salt walls grew to form topographic barriers. Late‐stage retreat of the Cutler fluvial system coincided with construction and accumulation of an aeolian system, recording a period of heightened climatic aridity. Aeolian sediments are preserved in the lees of some salt walls, demonstrating that halokinesis played a complex role in the differential trapping of sediment.  相似文献   
116.
117.
Migration velocity analysis, a method for determining long wavelength velocity structure, is a critical step in prestack imaging. Solution of this inverse problem is made difficult by a multimodal objective function; a parameter space often vast in extent; and an evaluation procedure for candidate solutions, involving the calculation of depth-migrated image gathers, that can be prohibitively expensive. Recognizing the global nature of the problem, we employ a genetic algorithm (GA) in the search for the optimum velocity model. In order to describe a model efficiently, regions of smooth variation are identified and sparsely parametrized. Region boundaries are obtained via map migration of events picked on the zero-offset time section. Within a region, which may contain several reflectors, separate components describe long and short wavelength variations, eliminating from the parameter space, models with large velocity fluctuations. Vital to the success of the method is rapid model evaluation, achieved by generating image gathers only in the neighbourhood of specific reflectors. Probability of a model, which we seek to maximize, is derived from the flatness of imaged events. Except for an initial interpretation of the zero-offset time section, our method is automatic in that it requires no picking of residual moveout on migrated gathers. Using an example data set from the North Sea, we show that it is feasible to solve for all velocity parameters in the model simultaneously: the method is global in this respect also.  相似文献   
118.
119.
120.
The natural Australian landscape sustains a mosaic of wetlands that range from permanently wet to temporary. This diversity of wetland types and habitats provides for diverse biotic communities, many of which are specific to individual wetlands. This paper explores the prospects for southern Australian wetlands under modified water regime and salinity induced by climatic changes. Extended droughts predicted as a consequence of climate change (lower rainfall and higher temperatures) combined with human-induced changes to the natural hydrological regime will lead to reductions in the amount of water available for environmental and anthropogenic uses. Reduced runoff and river flows may cause the loss of some temporary wetland types that will no longer hold water long enough to support hydric communities. Species distributions will shift and species extinctions may result particularly across fragmented or vulnerable landscapes. Accumulation of salts in wetlands shift species-rich freshwater communities to species-poor salt tolerant communities. Wetlands will differ in ecological response to these changes as the salinity and drying history of each wetland will determine its resilience: in the short term some freshwater communities may recover but they are unlikely to survive and reproduce under long term increased salinity and altered hydrology. In the long term such salinized wetlands with altered hydrology will need to be colonized by salt tolerant species adapted for the new hydrological conditions if they are to persist as functional wetlands. As the landscape becomes more developed, to accommodate the need for water in a warmer drying climate, increasing human intervention will result in a net loss of wetlands and wetland diversity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号