A sample of 1497 carbon stars in the Large Magellanic Cloud (LMC) has been observed in the red part of the spectrum with the 2dF facility on the Anglo-Australian Telescope. Of these, 156 have been identified as J-type (i.e. 13C-rich) carbon stars using a technique which provides a clear distinction between J stars and the normal N-type carbon stars that comprise the bulk of the sample, and yields few borderline cases. A simple two-dimensional classification of the spectra, based on their spectral slopes in different wavelength regions, has been constructed and found to be related to the more conventional c and j indices, modified to suit the spectral regions observed. Most of the J stars form a photometric sequence in the K − ( J − K ) colour–magnitude diagram, parallel to and 0.6 mag fainter than the N-star sequence. A subset of the J stars (about 13 per cent) are brighter than this J-star sequence; most of these are spectroscopically different from the other J stars. The bright J stars have stronger CN bands than the other J stars and are found strongly concentrated in the central regions of the LMC. Most of the rather few stars in common with Hartwick and Cowley's sample of suspected CH stars are J stars. Overall, the proportion of carbon stars identified as J stars is somewhat lower than has been found in the Galaxy. The Na D lines are weaker in the LMC J stars than in either the Galactic J stars or the LMC N stars, and do not seem to depend on temperature. 相似文献
We describe the evolutionary progression of an outburst of the Rapid Burster. Four outbursts have been observed with the Rossi X-Ray Timing Explorer between 1996 February and 1998 May, and our observations are consistent with a standard evolution over the course of each. An outburst can be divided into two distinct phases. Phase I is dominated by type I bursts, with a strong persistent emission component; it lasts for 15–20 d. Phase II is characterized by type II bursts, which occur in a variety of patterns. The light curves of time-averaged luminosity for the outbursts show some evidence for reflares, similar to those seen in soft X-ray transients. The average recurrence time for Rapid Burster outbursts during this period was 218 d, in contrast to an average ∼180‐d recurrence period observed during 1976–1983. 相似文献
We present coronal density profiles derived from low-frequency (80?–?240 MHz) imaging of three Type III solar radio bursts observed at the limb by the Murchison Widefield Array (MWA). Each event is associated with a white-light streamer at larger heights and is plausibly associated with thin extreme-ultraviolet rays at lower heights. Assuming harmonic plasma emission, we find average electron densities of 1.8\(\times10^{8}\) cm?3 down to 0.20\(\times10^{8}\) cm?3 at heights of 1.3 to 1.9 R⊙. These values represent approximately 2.4?–?5.4× enhancements over canonical background levels and are comparable to the highest streamer densities obtained from data at other wavelengths. Assuming fundamental emission instead would increase the densities by a factor of four. High densities inferred from Type III source heights can be explained by assuming that the exciting electron beams travel along overdense fibers or by radio propagation effects that may cause a source to appear at a larger height than the true emission site. We review the arguments for both scenarios in light of recent results. We compare the extent of the quiescent corona to model predictions to estimate the impact of propagation effects, which we conclude can only partially explain the apparent density enhancements. Finally, we use the time- and frequency-varying source positions to estimate electron beam speeds of between 0.24 and 0.60 c. 相似文献
The early evolution of Titan's atmosphere is expected to produce enrichment in the heavy isotopomers of CO, 13CO and C18O, relative to 12C16O. However, the original isotopic signatures may be altered by photochemical reactions. This paper explains why there is no isotopic enrichment in C in Titan's atmosphere, despite significant enrichment of heavy H, N, and O isotopes. We show that there is a rapid exchange of C atoms between the CH4 and CO reservoirs, mediated by the reaction 1CH2+*CO→1*CH2+CO, where *C is 13C. Based on recent laboratory measurements, we estimate the rate coefficient for this reaction to be 3.2×10−12 cm3 s−1 at the temperature appropriate for the upper atmosphere of Titan. We investigate the isotopic dilution of CO using the Caltech/JPL one-dimensional photochemical model of Titan. Our model suggests that the time constant for isotopic exchange through the above reaction is about 800 Myr, which is significantly shorter than the age of Titan, and therefore any original isotopic enhancement of 13C in CO may have been diluted by the exchange process. In addition, a plausible model for the evolution history of CO on Titan after the initial escape is proposed. 相似文献
A redetermination of the isotopic composition of atmospheric argon by Lee, J.-Y., Marti, K., Severinghaus, J.P., Kawamura, K., Yoo, H.-S., Lee, J.B., Kim, J.S. [2006. A redetermination of the isotopic abundances of atmospheric Ar. Geochimica et Cosmochimica Acta 70, 4507–4512] represents the first refinement since the work of Nier [1950. A redetermination of the relative abundances of the isotopes of carbon, nitrogen, oxygen, argon, and potassium. Physical Reviews 77, 789–793]. The new 40Ar:38Ar:36Ar proportions imply <1% adjustments to 40Ar/39Ar ages in all but exceptional cases of very young and/or K-poor and/or Ca-rich samples, or cases in which samples are grossly under- or over-irradiated. Analytical protocols employing atmospheric argon to determine mass discrimination corrections are insensitive to the effects of revision on the air correction, but are subject to non-negligible adjustments arising from expanded heavy to light isotope ratios attending the increased mass discrimination correction. The competing effects of increased 40Ar/39Ar and 40Ar/37Ar ratios render the adjustments a function of sample chemistry and neutron irradiation parameters. The improved precision of atmospheric 40Ar/36Ar and 38Ar/36Ar permits increasingly sensitive detection of departures from atmospheric values. Non-atmospheric initial 40Ar/36Ar values are increasingly well-documented in volcanic materials, including subatmospheric values correlated with 38Ar/36Ar in a trend consistent with kinetic mass fractionation whereby incomplete equilibration between magma and atmosphere favors light isotope enrichment in the magma. The detailed mechanism(s) of such fractionation are unclear and must be clarified by further study. A detectable increase in atmospheric 40Ar/36Ar in the past 800 ka [Bender, M.L., Barnett, B., Dreyfus, G., Jouzel, J., Porcelli, D., 2008. The contemporary degassing rate of 40Ar from the Earth. Proceedings of the National Academy of Sciences 105, 8232–8237] suggests that ages of late Quaternary (e.g., <100 ka) materials incorporating large amounts of atmospheric argon such as biotite may be underestimated by as much as 100% if a modern atmospheric 40Ar/36Ar value is erroneously assumed, unless air argon is used to determine mass discrimination. Further evaluation of the evolution of paleoatmospheric 40Ar/36Ar, and the fidelity with which argon trapped in igneous materials reflects this, would be very productive. The use of isochrons rather than model (e.g., plateau) ages mitigates the vagaries associated with uncertain trapped argon isotope ratios, and the importance of strategies to derive statistically valid isochrons is underscored. 相似文献
Magma degassing at Soufrière Hills Volcano (SHV) is characterised by an almost permanent SO2 flux and a HCl production rate which mainly depends on dome growth rate. Degassing processes have been studied through textural, H2O and halogen analyses of clasts collected between 1995 and 2006 on the dome and in pyroclastic flows and vulcanian eruption deposits. Cl, Br and I are strongly depleted in melts during H2O degassing with no significant Cl–Br–I fractionation, whereas F is almost unaffected. All magmas erupted at SHV have followed a multi-step degassing path from the magma chamber up to a shallow depth ( 1 km, P 20 MPa). From that depth, however, effusive and explosive paths are distinct; vulcanian eruptions are the result of closed system degassing (CSD), while effusive dome growth is the result of CSD up to a very shallow depth (≤ 200 m, P 5–2 MPa) followed by open system degassing (OSD). CSD is modelled using the H2O solubility law, the perfect gas law and partition coefficients of halogens between a rhyolitic melt and H2O vapour (dv − li). Gas loss characteristic of OSD is modelled using a Rayleigh law. Degassing induced crystallisation is introduced through the ratio of crystallisation and degassing rates, which ranges from 150–500. dv − lCl for OSD ranges between 50–300, increasing with melt Cl content. For CSD, the lower effective dv − lCl ( 20) is attributed to kinetic effects.
Dome forming activity has a greater impact on atmospheric chemistry than vulcanian eruptions because OSD is much more efficient at extracting halogens. The model shows that HCl flux is a good proxy for the dome forming eruption rate. Comparison between model and measured gas compositions suggests a high HBr–BrO conversion rate (BrO/Total Br 1/3) in the SHV gas plume.
The degassing behaviour of Cl, Br and I implies similar Cl/Br ( 160) and Br/I ( 90) in initial melts, volcanic clasts and high temperature gases. The low Cl/Br at SHV compared to other island arcs ( 250–300) is attributed to a shallow, pre-eruptive Br enrichment. The almost permanent dome extrusion at SHV since 1995 has likely had a significant regional atmospheric impact because of the very efficient effusive degassing and the high conversion rate of halogens into reactive species within the gas plume. 相似文献