首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   998篇
  免费   47篇
测绘学   24篇
大气科学   64篇
地球物理   231篇
地质学   273篇
海洋学   103篇
天文学   163篇
综合类   2篇
自然地理   185篇
  2023年   8篇
  2021年   7篇
  2020年   26篇
  2019年   19篇
  2018年   13篇
  2017年   19篇
  2016年   23篇
  2015年   23篇
  2014年   36篇
  2013年   53篇
  2012年   20篇
  2011年   27篇
  2010年   54篇
  2009年   45篇
  2008年   42篇
  2007年   48篇
  2006年   38篇
  2005年   31篇
  2004年   40篇
  2003年   36篇
  2002年   47篇
  2001年   28篇
  2000年   22篇
  1999年   24篇
  1998年   23篇
  1997年   15篇
  1996年   11篇
  1995年   13篇
  1994年   8篇
  1993年   14篇
  1992年   8篇
  1991年   17篇
  1990年   11篇
  1988年   12篇
  1987年   11篇
  1986年   11篇
  1985年   12篇
  1984年   14篇
  1983年   12篇
  1982年   12篇
  1981年   12篇
  1980年   10篇
  1979年   6篇
  1978年   13篇
  1977年   14篇
  1976年   6篇
  1975年   9篇
  1974年   6篇
  1973年   7篇
  1972年   6篇
排序方式: 共有1045条查询结果,搜索用时 15 毫秒
221.
Field evidence and fluid inclusion studies on South Indian incipient charnockites suggest that charnockite formation occurred during a decompressional brittle regime following the ‘peak’ of metamorphism and regional deformation. The most abundant type of inclusions in quartz and garnet grains in these charnockites contain high-density carbonic fluids, although lower-density fluids occur in younger arrays of inclusions. Discrete fluid inclusion generations optically are observed to decrepitate over well-defined temperature intervals, and quantitative measurements of CO2 abundance released from these inclusions by stepped thermal decrepitation show up to a four-fold increase (by volume) in the incipient charnockites relative to the adjacent gneisses from which they are derived. Studies based on optical thermometry, visual decrepitation and stepped-heating inclusion release together indicate that entrapment of carbonic fluids coincided with charnockite formation. We confirm that an influx of carbon dioxide-rich fluids is associated with the amphibolite-granulite transition, as recorded by the incipient charnockites, the remnants of which are commonly preserved as the earliest generation of high-density fluid inclusions.  相似文献   
222.
223.
A unified picture of the photodissociation of theC 2 H radical has been developed using the results from the latest experimental and theoretical work. This picture shows that a variety of electronic states ofC 2 are formed during the photodissociation of theC 2 H radical even if photoexcitation accesses only one excited state. This is because the excited states have many avoided corssings and near intersections where two electronic states come very close to one another. At these avoided crossings and near intersections, the excited radical can hop from one electronic state to another and access new final electronic states of theC 2 radical. The complexity of the excited state surfaces also explains the bimodal rotational distributions that are observed in all of the electronic states studied. The excited states that dissociate through a direct path are limited by dynamics to produceC 2 fragments with a modest amount of rotational energy, whereas those that dissociate by a more complex path have a greater chance to access all of phase space and produce fragments with higher rotational excitation. Finally, the theoretical transition moments and potential energy curves have been used to provide a better estimate of the photochemical lifetimes in comets of the different excited states of theC 2 H radical. The photochemically active states are the 22+, 22II, 32II, and 32+, with photodissociation rate constants of 1.0×10–6, 4.0×10–6, 0.7×10–6, and 1.3×10–6s–1, respectively. These rate constants lead to a total photochemical lifetime of 1.4×105 s.  相似文献   
224.
225.
226.
The in-situ upgrading (ISU) of bitumen and oil shale is a very challenging process to model numerically because of the large number of components that need to be modelled using a system of equations that are both highly non-linear and strongly coupled. Operator splitting methods are one way of potentially improving computational performance. Each numerical operator in a process is modelled separately, allowing the best solution method to be used for the given numerical operator. A significant drawback to the approach is that decoupling the governing equations introduces an additional source of numerical error, known as the splitting error. The best splitting method for modelling a given process minimises the splitting error whilst improving computational performance compared to a fully implicit approach. Although operator splitting has been widely used for the modelling of reactive-transport problems, it has not yet been applied to the modelling of ISU. One reason is that it is not clear which operator splitting technique to use. Numerous such techniques are described in the literature and each leads to a different splitting error. While this error has been extensively analysed for linear operators for a wide range of methods, the results cannot be extended to general non-linear systems. It is therefore not clear which of these techniques is most appropriate for the modelling of ISU. In this paper, we investigate the application of various operator splitting techniques to the modelling of the ISU of bitumen and oil shale. The techniques were tested on a simplified model of the physical system in which a solid or heavy liquid component is decomposed by pyrolysis into lighter liquid and gas components. The operator splitting techniques examined include the sequential split operator (SSO), the Strang-Marchuk split operator (SMSO) and the iterative split operator (ISO). They were evaluated on various test cases by considering the evolution of the discretization error as a function of the time-step size compared with the results obtained from a fully implicit simulation. We observed that the error was least for a splitting scheme where the thermal conduction was performed first, followed by the chemical reaction step and finally the heat and mass convection operator (SSO-CKA). This method was then applied to a more realistic model of the ISU of bitumen with multiple components, and we were able to obtain a speed-up of between 3 and 5.  相似文献   
227.
Fluid migration pathways in the subsurface are heavily influenced by pre‐existing faults. Although studies of active fluid‐escape structures can provide insights into the relationships between faults and fluid flow, they cannot fully constrain the geometry of and controls on the contemporaneous subsurface fluid flow pathways. We use 3D seismic reflection data from offshore NW Australia to map 121 ancient hydrothermal vents, likely related to magmatic activity, and a normal fault array considered to form fluid pathways. The buried vents consist of craters up to 264 m deep, which host a mound of disaggregated sedimentary material up to 518 m thick. There is a correlation between vent alignment and underlying fault traces. Seismic‐stratigraphic observations and fault kinematic analyses reveal that the vents were emplaced on an intra‐Tithonian seabed in response to the explosive release of fluids hosted within the fault array. We speculate that during the Late Jurassic the convex‐upwards morphology of the upper tip‐lines of individual faults acted to channelize ascending fluids and control where fluid expulsion and vent formation occurred. This contribution highlights the usefulness of 3D seismic reflection data to constraining normal fault‐controlled subsurface fluid flow.  相似文献   
228.
We compare evidence of coronal magnetic fields from polarized metric type III radio bursts with (a) global potential field models, (b) direct averages of the observed photospheric magnetic field, and (c) H synoptic charts. The comparison clearly indicates both that the principal aspects of type III burst radiation are understood and that global potential field models are a significantly more accurate representation of coronal magnetic field structure than either the large-scale photospheric field or H synoptic charts.  相似文献   
229.
230.
Large sections of the western Irish coast are characterised by a highly compartmentalised series of headland-embayment cells in which sand and gravel beaches are backed by large vegetated dune systems. Exposure to modally high-energy swell renders most of these beaches dissipative in character. A mesotidal range (c. 3.5–4.5 m) exists along much of the coast. Analysis of instrumental wind records from three locations permitted the identification of a variety of storm types and the construction of storm catalogues. Few individual storms were recorded at all three stations indicating a lack of regional consistency in storm record. Of the total storms recorded, only a small percentage are potentially damaging (onshore directed) and even fewer span a high tide and thus potentially induce a measurable morphological response at the coast.

Through a combination of historical records, meteorological records, field observations and wave modelling we attempt to assess the impact of storms. Quantifiable records of coastal morphology (maps, air photos and beach profiles) are few in number and do not generally record responses that may be definitely attributed to specific storms. Numerical wave simulations and observations at a variety of sites on the west Irish coast, however, provide insights into instantaneous and medium term (decadal) storm responses in such systems.

We argue that beaches and dunes that are attuned to modally high-energy regimes require extreme storms to cause significant morphological impact. The varying orientation of beaches, a spatially nonuniform storm catalogue and the need for a storm to occur at high water to produce measurable change, impart site-specific storm susceptibility to these embayments. Furthermore, we argue that long-period wave energy attenuation across dissipative shorefaces and beaches reduces coastal response to distant storms whereas short-period, locally generated wind waves are more likely to cause major dune and beach erosion as they arrive at the shoreline unrefracted.

This apparently variable response of beach and dune systems to storm forcing at a decadal scale over a coastline length of 200 km urges caution in generalising regarding regional-scale coastal responses to climatic change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号