首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   499篇
  免费   18篇
测绘学   7篇
大气科学   53篇
地球物理   121篇
地质学   179篇
海洋学   64篇
天文学   61篇
综合类   1篇
自然地理   31篇
  2023年   2篇
  2021年   5篇
  2020年   12篇
  2019年   5篇
  2018年   20篇
  2017年   23篇
  2016年   21篇
  2015年   18篇
  2014年   20篇
  2013年   26篇
  2012年   23篇
  2011年   17篇
  2010年   29篇
  2009年   36篇
  2008年   24篇
  2007年   23篇
  2006年   19篇
  2005年   11篇
  2004年   10篇
  2003年   13篇
  2002年   13篇
  2001年   7篇
  2000年   9篇
  1999年   6篇
  1998年   7篇
  1997年   6篇
  1996年   8篇
  1995年   5篇
  1994年   6篇
  1993年   9篇
  1992年   3篇
  1990年   3篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1984年   5篇
  1983年   10篇
  1982年   2篇
  1981年   5篇
  1980年   9篇
  1979年   3篇
  1978年   4篇
  1977年   6篇
  1976年   4篇
  1975年   4篇
  1973年   4篇
  1972年   3篇
  1959年   1篇
  1957年   1篇
  1953年   1篇
排序方式: 共有517条查询结果,搜索用时 15 毫秒
71.
72.
Rodríguez  Oriol  Bech  Joan 《Natural Hazards》2020,104(1):1021-1038
Natural Hazards - High-resolution aerial imagery may provide very detailed information about strong-convective wind events, which can be very useful to enhance and make more robust severe weather...  相似文献   
73.
74.
Concentrated erosion, a major feature of land degradation, represents a serious problem for soil and water resources management and a threat to ecosystems. Understanding the internal mechanisms (de-)coupling sediment pathways can improve the management and resilience of catchments. In this study, concentrated erosion and deposition forms were mapped accurately through field and aerial unmanned aerial vehicle (UAV) campaigns, in order to assess the evolution of connectivity pathways over a series of three contrasted and consecutive flood events occurring between October 2016 and January 2017 (return period ranging from 0.5 to 25 years) in a small Mediterranean agricultural catchment (Can Revull, Mallorca, Spain; 1.4 km2). In addition, a morphometric index of connectivity (IC) was used to identify the potential trajectories of different concentrated erosion forms and deposition areas. IC predictions were calibrated by identifying the optimal critical thresholds, i.e. those most consistent with field observations after each of the events studied. The results found that the index performed well in predicting the occurrence and the length/area of the different type of landforms, giving kappa (κ) coefficients of variation ranging between 0.21 and 0.92 and linear correlations R2 between 0.33 and 0.72. The type of landform affected the correspondence of IC predictions and field observations, with lower thresholds the greater the magnitude of their associated geomorphic processes. Rainfall magnitude proved to be a very important factor controlling the development of erosion and deposition landforms, with large differences in length/area between the contrasted events. The evolution of the observed trajectories revealed feedback dynamics between the structural and functional connectivity of the catchment, in which morphological changes determined the spatial distribution of the processes’ activity in the successive events and vice versa. © 2020 John Wiley & Sons, Ltd.  相似文献   
75.
76.
77.
The impossibility of observing magma migration inside the crust obliges us to rely on geophysical data and mathematical modelling to interpret precursors and to forecast volcanic eruptions. Of the geophysical signals that may be recorded before and during an eruption, deformation and seismicity are two of the most relevant as they are directly related to its dynamic. The final phase of the unrest episode that preceded the 2011–2012 eruption on El Hierro (Canary Islands) was characterized by local and accelerated deformation and seismic energy release indicating an increasing fracturing and a migration of the magma. Application of time varying fractal analysis to the seismic data and the characterization of the seismicity pattern and the strain and the stress rates allow us to identify different stages in the source mechanism and to infer the geometry of the path used by the magma and associated fluids to reach the Earth’s surface. The results obtained illustrate the relevance of such studies to understanding volcanic unrest and the causes that govern the initiation of volcanic eruptions.  相似文献   
78.
To assess the presence of endocrine disruptors in treated marine outfall discharges and their possible effects, mussels (Mytilus galloprovincialis) were caged in the environmental mixing zone of the outfall of the Santander sanitation system and in one control area. After 30, 60 and 90 days, samples were collected to perform chemical analyses (metals, anionic surfactants, alkylphenols, bisphenol A, phthalates and estrogenic hormones), biomarkers of general stress (lysosomal membrane stability-LMS, histopathology) and biomarkers of endocrine disruption (vitellogenin-like proteins and gonad index). There were no significant differences between outfall and control sites on contaminant levels, except for 4-tert-octylphenol which was higher in the outfall site. Bacteriological counts were higher in the outfall area. No relevant differences in biomarkers were detected between treated and control mussels. A significant reduction in LMS occurred in both groups after 90 days caging, indicating a stress situation possibly related to caging or to post-spawning reproductive state.  相似文献   
79.
Phreatic overgrowths on speleothems (POS) are carbonate formations deposited at the water table of caves in unique karstic coastal settings having morphologies that can be directly related to sea level at the time of formation. The U‐Th ages of calcite and aragonite overgrowths collected from the modern water table in coastal caves on Mallorca (Cova de Cala Varques A and Cova des Pas de Vallgornera) were determined using high‐precision MC‐ICPMS techniques. U‐Th ages indicate that phreatic carbonate deposition occurred between ca 2·8 and at least 0·6 ka BP and are in accord with an archeologically estimated age of 3·7–3·0 ka BP for a drowned prehistoric construction at a depth of 1 m below current sea level in a cave from the same area. Speleothem δ13C and δ18O and chemical composition of cave pools provide supportive evidence that POS reflect mixing between seawater and brackish water table. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
80.
A new method to calculate volcanic susceptibility, i.e. the spatial probability of vent opening, is presented. Determination of volcanic susceptibility should constitute the first step in the elaboration of volcanic hazard maps of active volcanic fields. Our method considers different criteria as possible indicators for the location of future vents, based on the assumption that these locations should correspond to the surface expressions of the most likely pathways for magma ascent. Thus, two groups of criteria have been considered depending on the time scale (short or long term) of our approach. The first one accounts for long-term hazard assessment and corresponds to structural criteria that provide direct information on the internal structure of the volcanic field, including its past and present stress field, location of structural lineations (fractures and dikes), and location of past eruptions. The second group of criteria concerns to the computation of susceptibility for short term analyses (from days to a few months) during unrest episodes, and includes those structural and dynamical aspects that can be inferred from volcano monitoring. Thus, a specific layer of information is obtained for each of the criteria used. The specific weight of each criterion on the overall analysis depends on its relative significance to indicate pathways for magma ascent, on the quality of data and on their degree of confidence. The combination of the different data layers allows to create a map of the spatial probability of future eruptions based on objective criteria, thus constituting the first step to obtain the corresponding volcanic hazards map. The method has been used to calculate long-term volcanic susceptibility on Tenerife (Canary Islands), and the results obtained are also presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号