Maximum and minimum void ratios (emax and emin) of granular soils are commonly used as indicators of many engineering properties. However, few methods, apart from laboratory tests, are available to provide a rapid estimation of both emax and emin. In this study, we present a theoretical model to map the densest and the loosest packing configurations of granular soils onto the void space. A corresponding numerical procedure that can predict both emax and emin of granular soils with arbitrary grain size distributions is proposed. The capacity of the proposed method is evaluated by predicting the maximum and minimum void ratios of medium to fine mixed graded sands with different contents of fines. The influence of the grain size distribution, characterized quantitatively by uniformity parameter and the fractal dimension, on emax and emin is discussed using the proposed method. Moreover, application of this method in understanding the controlling mechanism for the void ratio change during grain crushing is presented.
Pattern recognition in road networks can be used for different applications, including spatiotemporal data mining, automated map generalization, data matching of different levels of detail, and other important research topics. Grid patterns are a common pattern type. This paper proposes and implements a method for grid pattern recognition based on the idea of mesh classification through a supervised learning process. To train the classifier, training datasets are selected from worldwide city samples with different cultural, historical, and geographical environments. Meshes are subsequently labeled as composing or noncomposing grids by participants in an experiment, and the mesh measures are defined while accounting for the mesh’s individual characteristics and spatial context. The classifier is generated using the C4.5 algorithm. The accuracy of the classifier is evaluated using Kappa statistics and the overall rate of correctness. The average Kappa value is approximately 0.74, which corresponds to a total accuracy of 87.5%. Additionally, the rationality of the classifier is evaluated in an interpretation step. Two other existing grid pattern recognition methods were also tested on the datasets, and comparison results indicate that our approach is effective in identifying grid patterns in road networks. 相似文献
In this note, two different approaches are used to estimate the entrainment-flux to surface-flux ratio for a sheared convective
boundary layer (CBL); both are derived under the framework of the first-order jump model (FOM). That suggested by Sun and
Wang (SW approach) has the advantage that there is no empirical constant included, though the dynamics are described in an
implicit manner. The second, which was proposed by Kim et al. and Pino et al. (KP approach), explicitly characterizes the
dynamics of the sheared entrainment, but uncertainties are induced through the empirical constants. Their performances in
parameterizing the CBL growth rate are compared and discussed, and a new value of the parameter A3 in the KP approach is suggested. Large-eddy simulation (LES) data are employed to test both approaches: simulations are conducted
for the CBL growing under varying conditions of surface roughness, free-atmospheric stratification, and wind shear, and data
used when the turbulence is in steady state. The predicted entrainment rates in each case are tested against the LES data.
The results show that the SW approach describes the evolution of the sheared CBL quite well, and the KP approach also reproduces
the growth of the CBL reasonably, so long as the value of A3 is modified to 0.6. 相似文献
The properties and tectonic significance of the fault bound zone on the northern margin of the Central Tianshan belt are key
issues to understand the tectonic framework and evolutionary history of the Tianshan Orogenic Belt. Based on the geological
and geochemical studies in the Tianshan orogenic belt, it is suggested that the ophiolitic slices found in the Bingdaban area
represent the remaining oceanic crust of the Early Paleozoic ocean between the Hazakstan and Zhungaer blocks. Mainly composed
of basalts, gabbros and diabases, the ophiolites were overthrust onto the boundary fault between the Northern Tianshan and
Central Tianshan belts. The major element geochemistry is characterized by high TiO2 (1.50%–2.25%) and MgO (6.64%–9.35%), low K2O (0.06%–0.41%) and P2O5 (0.1%–0.2%), and Na2O>K2O as well. Low ΣREE and depletion in LREE indicate that the original magma was derived from a depleted mantle source. Compared
with a primitive mantle, the geochemistry of the basalts from the Bingdaban area is featureded by depletion in Th, U, Nb,
La, Ce and Pr, and unfractionated in HFS elements. The ratios of Zr/Nb, Nb/La, Hf/Ta, Th/Yb and Hf/Th are similar to those
of the typical N-MORB. It can be interpreted that the basalts in the Bingdaban area were derived from a depleted mantle source,
and formed in a matured mid-oceanic ridge setting during the matured evolutionary stage of the Northern Tianshan ocean. In
comparison with the basalts, the diabases from the Bingdaban area show higher contents of Al2O3, ΣREE and HFS elements as well as unfractionated incompatible elements except Cs, Rb and Ba, and about 10 times the values
of the primitive mantle. Thus, the diabases are thought to be derived from a primitive mantle and similar to the typical E-MORB.
The diabases also have slight Nb depletion accompanying no apparent Th enrichment compared with N-MORB. From studies of the
regional geology and all above evidence, it can be suggested that the diabases from the Bingdaban area were formed in the
mid-oceanic ridge of the Northern Tianshan ocean during the initial spreading stage.
Supported by the Major State Research Program of PRC (Grant No. 2001CB409801), the National Natural Science Foundation of
China (Grant Nos. 40472115 and 40234041) and the State Research Program of China Geological Survey (Grant No. 2001130000-22) 相似文献