全文获取类型
收费全文 | 36115篇 |
免费 | 2369篇 |
国内免费 | 3918篇 |
专业分类
测绘学 | 2238篇 |
大气科学 | 4656篇 |
地球物理 | 7473篇 |
地质学 | 17500篇 |
海洋学 | 2609篇 |
天文学 | 2270篇 |
综合类 | 3129篇 |
自然地理 | 2527篇 |
出版年
2024年 | 54篇 |
2023年 | 203篇 |
2022年 | 517篇 |
2021年 | 614篇 |
2020年 | 490篇 |
2019年 | 600篇 |
2018年 | 5251篇 |
2017年 | 4483篇 |
2016年 | 3144篇 |
2015年 | 824篇 |
2014年 | 796篇 |
2013年 | 785篇 |
2012年 | 1639篇 |
2011年 | 3389篇 |
2010年 | 2636篇 |
2009年 | 2952篇 |
2008年 | 2436篇 |
2007年 | 2832篇 |
2006年 | 541篇 |
2005年 | 679篇 |
2004年 | 776篇 |
2003年 | 814篇 |
2002年 | 670篇 |
2001年 | 466篇 |
2000年 | 508篇 |
1999年 | 613篇 |
1998年 | 500篇 |
1997年 | 464篇 |
1996年 | 437篇 |
1995年 | 357篇 |
1994年 | 319篇 |
1993年 | 289篇 |
1992年 | 229篇 |
1991年 | 189篇 |
1990年 | 155篇 |
1989年 | 142篇 |
1988年 | 129篇 |
1987年 | 77篇 |
1986年 | 79篇 |
1985年 | 60篇 |
1984年 | 52篇 |
1983年 | 28篇 |
1982年 | 26篇 |
1981年 | 51篇 |
1980年 | 41篇 |
1979年 | 12篇 |
1978年 | 9篇 |
1976年 | 12篇 |
1973年 | 7篇 |
1958年 | 9篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
随着信息技术的发展和信息化程度的不断提高,国土行业的软件开发活动越来越多。本文在综合考虑本行业软件开发中面临问题的基础上,融合项目管理的理论成果,积极探索在国土行业的软件开发中建立项目管理制度,从人员、流程、合同、质量和文档等方面对项目管理制度进行描述,并详细论述了项目管理制度的重要性,希望能为国土行业软件开发提供积极的启示和有益的借鉴。 相似文献
42.
In an elementary approach every geometrical height difference between the staff points of a levelling line should have a corresponding
average g value for the determination of potential difference in the Earth’s gravity field. In practice this condition requires as
many gravity data as the number of staff points if linear variation of g is assumed between them. Because of the expensive fieldwork, the necessary data should be supplied from different sources.
This study proposes an alternative solution, which is proved at a test bed located in the Mecsek Mountains, Southwest Hungary,
where a detailed gravity survey, as dense as the staff point density (~1 point/34 m), is available along a 4.3-km-long levelling
line. In the first part of the paper the effect of point density of gravity data on the accuracy of potential difference is
investigated. The average g value is simply derived from two neighbouring g measurements along the levelling line, which are incrementally decimated in the consecutive turns of processing. The results
show that the error of the potential difference between the endpoints of the line exceeds 0.1 mm in terms of length unit if
the sampling distance is greater than 2 km. Thereafter, a suitable method for the densification of the decimated g measurements is provided. It is based on forward gravity modelling utilising a high-resolution digital terrain model, the
normal gravity and the complete Bouguer anomalies. The test shows that the error is only in the order of 10−3mm even if the sampling distance of g measurements is 4 km. As a component of the error sources of levelling, the ambiguity of the levelled height difference which
is the Euclidean distance between the inclined equipotential surfaces is also investigated. Although its effect accumulated
along the test line is almost zero, it reaches 0.15 mm in a 1-km-long intermediate section of the line. 相似文献
43.
Many regions around the world require improved gravimetric data bases to support very accurate geoid modeling for the modernization
of height systems using GPS. We present a simple yet effective method to assess gravity data requirements, particularly the
necessary resolution, for a desired precision in geoid computation. The approach is based on simulating high-resolution gravimetry
using a topography-correlated model that is adjusted to be consistent with an existing network of gravity data. Analysis of
these adjusted, simulated data through Stokes’s integral indicates where existing gravity data must be supplemented by new
surveys in order to achieve an acceptable level of omission error in the geoid undulation. The simulated model can equally
be used to analyze commission error, as well as model error and data inconsistencies to a limited extent. The proposed method
is applied to South Korea and shows clearly where existing gravity data are too scarce for precise geoid computation. 相似文献
44.
Reshu Agarwal Rakesh Gupta J. K. Garg 《Journal of the Indian Society of Remote Sensing》2009,37(3):473-481
A three-step hierarchical Semi Automated Empirical Methane Emission Model (SEMEM) has been used to estimate methane emission
from wetlands and waterlogged areas in India using Moderate Resolution Imagine Spectroradiometer (MODIS) sensor data onboard
Terra satellite. Wetland Surface Temperature (WST), methane emission fluxes and wetland extent have been incorporated as parameters
in order to model the methane emission. Analysis of monthly MODIS data covering the whole of India from November 2004 to April
2006 was carried out and monthly methane emissions have been estimated. Interpolation techniques were adopted to fill the
data gaps due to cloudy conditions during the monsoon period. AutoRegressive Integrated Moving Average (ARIMA) model has been
fitted to estimate the emitted methane for the months of May 2006 to August 2006 using SPSS software. 相似文献
45.
46.
Xiaodong Zhang Ho Jin Kim Clinton Streeter David A. Claypool Ramesh Sivanpillai Santhosh Seelan 《国际地球制图》2013,28(7):537-551
Precision agriculture often relies on high-resolution imagery to delineate the variability within a field. Airborne Environmental Research Observational Camera (AEROCam) was designed to meet the needs of agriculture producers, ranchers, and researchers, who require high-resolution imagery in a near real-time environment for rapid decision support. AEROCam was developed and operated through a unique collaboration between several departments at the University of North Dakota, including the Upper Midwest Aerospace Consortium (UMAC), the School of Engineering and Mines, and flight operations at the John D. Odegard School of Aerospace Sciences. AEROCam consists of a Redlake MS4100 area-scan multi-spectral digital camera that features a 1920 × 1080 CCD array (7.4-μm detector) with 8-bit quantization. When operated at ~2 km above ground level, multispectral images with four bands in the visible and near infrared have a ground sample distance of 1 m with a horizontal extent of just over 1.6 km. Depending on the applications, flying at different altitudes can adjust the spatial resolution from 0.25 to 2 m. Rigorous spectral and radiometric calibrations allow AEROCam to be used in a variety of applications, qualitative and quantitative. Equipped with an inertial measurement unit (IMU) system, the images acquired can be geo-referenced automatically and delivered to end users near real time through our Digital Northern Great Plains system (DNGP). The images are also available to zone mapping application for precision farming (ZoneMAP), an online decision support tool for creating management zones from remote sensing imagery and data from other sources. Operational since 2004, AEROCam has flown over 250 sorties and delivered over 150,000 images to the users in the Northern Great Plains region, resulting in numerous applications in precision agriculture and resource management. 相似文献
47.
In this paper, the structure of systematic and random errors in marine survey net are discussed in detail and the adjustment method for observations of marine survey net is studied, in which the rank-defect characteristic is discovered first up to now. On the basis of the survey-line systematic error model, the formulae of the rank-defect adjustment model are deduced according to modern adjustment theory. An example of calculations with really observed data is carried out to demonstrate the efficiency of this adjustment model. Moreover, it is proved that the semi-systematic error correction method used at present in marine gravimetry in China is a special case of the adjustment model presented in this paper. 相似文献
48.
Kousik Biswas Debashish Chakravarty Pabitra Mitra Arundhati Misra 《Journal of the Indian Society of Remote Sensing》2017,45(6):913-926
Interferometric Synthetic Aperture Radar (InSAR), nowadays, is a precise technique for monitoring and detecting ground deformation at a millimetric level over large areas using multi-temporal SAR images. Persistent Scatterer Interferometric SAR (PSInSAR), an advanced version of InSAR, is an effective tool for measuring ground deformation using temporally stable reference points or persistent scatterers. We have applied both PSInSAR and Small Baseline Subset (SBAS) methods, based on the spatial correlation of interferometric phase, to estimate the ground deformation and time-series analysis. In this study, we select Las Vegas, Nevada, USA as our test area to detect the ground deformation along satellite line-of-sight (LOS) during November 1992–September 2000 using 44 C-band SAR images of the European Remote Sensing (ERS-1 and ERS-2) satellites. We observe the ground displacement rate of Las Vegas is in the range of ?19 to 8 mm/year in the same period. We also cross-compare PSInSAR and SBAS using mean LOS velocity and time-series. The comparison shows a correlation coefficient of 0.9467 in the case of mean LOS velocity. Along this study, we validate the ground deformation results from the satellite with the ground water depth of Las Vegas using time-series analysis, and the InSAR measurements show similar patterns with ground water data. 相似文献
49.
Single-frequency precise point positioning (SF-PPP) is a potential precise positioning technique due to the advantages of the high accuracy in positioning after convergence and the low cost in operation. However, there are still challenges limiting its applications at present, such as the long convergence time, the low reliability, and the poor satellite availability and continuity in kinematic applications. In recent years, the achievements in the dual-frequency PPP have confirmed that its performance can be significantly enhanced by employing the slant ionospheric delay and receiver differential code bias (DCB) constraint model, and the multi-constellation Global Navigation Satellite Systems (GNSS) data. Accordingly, we introduce the slant ionospheric delay and receiver DCB constraint model, and the multi-GNSS data in SF-PPP modular together. In order to further overcome the drawbacks of SF-PPP in terms of reliability, continuity, and accuracy in the signal easily blocking environments, the inertial measurements are also adopted in this paper. Finally, we form a new approach to tightly integrate the multi-GNSS single-frequency observations and inertial measurements together to ameliorate the performance of the ionospheric delay and receiver DCB-constrained SF-PPP. In such model, the inter-system bias between each two GNSS systems, the inter-frequency bias between each two GLONASS frequencies, the hardware errors of the inertial sensors, the slant ionospheric delays of each user-satellite pair, and the receiver DCB are estimated together with other parameters in a unique Kalman filter. To demonstrate its performance, the multi-GNSS and low-cost inertial data from a land-borne experiment are analyzed. The results indicate that visible positioning improvements in terms of accuracy, continuity, and reliability can be achieved in both open-sky and complex conditions while using the proposed model in this study compared to the conventional GPS SF-PPP. 相似文献
50.
The Global Navigation Satellite System presents a plausible and cost-effective way of computing the total electron content (TEC). But TEC estimated value could be seriously affected by the differential code biases (DCB) of frequency-dependent satellites and receivers. Unlike GPS and other satellite systems, GLONASS adopts a frequency-division multiplexing access mode to distinguish different satellites. This strategy leads to different wavelengths and inter-frequency biases (IFBs) for both pseudo-range and carrier phase observations, whose impacts are rarely considered in ionospheric modeling. We obtained observations from four groups of co-stations to analyze the characteristics of the GLONASS receiver P1P2 pseudo-range IFB with a double-difference method. The results showed that the GLONASS P1P2 pseudo-range IFB remained stable for a period of time and could catch up to several meters, which cannot be absorbed by the receiver DCB during ionospheric modeling. Given the characteristics of the GLONASS P1P2 pseudo-range IFB, we proposed a two-step ionosphere modeling method with the priori IFB information. The experimental analysis showed that the new algorithm can effectively eliminate the adverse effects on ionospheric model and hardware delay parameters estimation in different space environments. During high solar activity period, compared to the traditional GPS + GLONASS modeling algorithm, the absolute average deviation of TEC decreased from 2.17 to 2.07 TECu (TEC unit); simultaneously, the average RMS of GPS satellite DCB decreased from 0.225 to 0.219 ns, and the average deviation of GLONASS satellite DCB decreased from 0.253 to 0.113 ns with a great improvement in over 55%. 相似文献