首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5631篇
  免费   1030篇
  国内免费   1318篇
测绘学   331篇
大气科学   1179篇
地球物理   1553篇
地质学   2729篇
海洋学   699篇
天文学   298篇
综合类   645篇
自然地理   545篇
  2024年   36篇
  2023年   107篇
  2022年   253篇
  2021年   293篇
  2020年   234篇
  2019年   263篇
  2018年   292篇
  2017年   266篇
  2016年   334篇
  2015年   291篇
  2014年   347篇
  2013年   303篇
  2012年   283篇
  2011年   319篇
  2010年   295篇
  2009年   355篇
  2008年   324篇
  2007年   300篇
  2006年   219篇
  2005年   241篇
  2004年   171篇
  2003年   166篇
  2002年   182篇
  2001年   181篇
  2000年   180篇
  1999年   250篇
  1998年   226篇
  1997年   181篇
  1996年   200篇
  1995年   146篇
  1994年   146篇
  1993年   152篇
  1992年   123篇
  1991年   68篇
  1990年   56篇
  1989年   48篇
  1988年   41篇
  1987年   21篇
  1986年   26篇
  1985年   11篇
  1984年   10篇
  1983年   9篇
  1982年   9篇
  1981年   8篇
  1980年   4篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1975年   1篇
  1958年   4篇
排序方式: 共有7979条查询结果,搜索用时 0 毫秒
181.
182.
183.
184.
基于主体功能区约束的大气污染物总量控制目标分配研究   总被引:1,自引:0,他引:1  
考虑经济发展水平、污染物排放现状、污染物治理水平、空气质量,特别是国家主体功能区环境目标约束等因素,构建大气污染物排放总量分配的指标体系,用改进的等比例分配方法对2015年国家SO2,NOx总量控制目标进行区域分配。分配结果表明:SO2和NOx削减量大的省份主要集中在华北平原及其周围地区,这些地区污染物排放量大、空气质量较差;削减比例较大的地区主要集中在西部地区以及北京、天津2个直辖市,这些地区单位GDP能耗高、工业污染物去除率低、空气质量差;削减量相对较小的地区主要集中在西南和南部一些省份;削减比例较小的地区主要集中在中南部和南部几个省份,这些地区污染物排放量相对较少,空气质量好于其他省份。  相似文献   
185.
We present a new reconstruction of summer sea‐surface salinity (SSS) over the past 15 000 years based on a diatom record from piston core 17940, located on the northern slope of the South China Sea (SCS). The reconstructed diatom‐based summer SSS values for the modern period are in accord with instrumental observations of summer SSS in the area. Here, the modern summer SSS is primarily controlled by river runoff, in particular from the Pearl River. The reconstruction presented in this study shows that the summer SSS varied between 33.3 and 34.2 psu over the past 15 000 years. The long‐term summer SSS trend closely followed the trend of the orbitally controlled solar insolation at 20°N, suggesting that orbital forcing was the dominant driver of changes in summer SSS in this area. Comparisons to speleothem δ18O data and studies of surface hydrography in the region suggest that changes in solar insolation affected the summer SSS through changes in the East Asian Monsoon and sea‐level changes associated with the last deglaciation. Univariate spectral analyses indicate that centennial‐scale oscillatory variations in summer SSS were superimposed on the long‐term trend. During the deglacial period (c. 12 000–9000 cal. a BP), the dominant periodicity was centred around 230–250 years, whereas a ~350‐year oscillation dominated in the period 2200–4500 cal. a BP. The balance of evidence suggests that these centennial‐scale changes in summer SSS may have been driven by solar‐induced changes in the East Asian Monsoon, but further evidence is needed to firmly establish this relationship.  相似文献   
186.
Accepting the concept of standardization introduced by the standardized precipitation index, similar methodologies have been developed to construct some other standardized drought indices such as the standardized precipitation evapotranspiration index (SPEI). In this study, the authors provided deep insight into the SPEI and recognized potential deficiencies/limitations in relating to the climatic water balance it used. By coupling another well‐known Palmer drought severity index (PDSI), we proposed a new standardized Palmer drought index (SPDI) through a moisture departure probabilistic approach, which allows multi‐scalar calculation for accurate temporal and spatial comparison of the hydro‐meteorological conditions of different locations. Using datasets of monthly precipitation, temperature and soil available water capacity, the moisture deficit/surplus was calculated at multiple temporal scales, and a couple of techniques were adopted to adjust corresponding time series to a generalized extreme value distribution out of several candidates. Results of the historical records (1900–2012) for diverse climates by multiple indices showed that the SPDI was highly consistent and correlated with the SPEI and self‐calibrated PDSI at most analysed time scales. Furthermore, a simple experiment of hypothetical temperature and/or precipitation change scenarios also verified the effectiveness of this newly derived SPDI in response to climate change impacts. Being more robust and preferable in spatial consistency and comparability as well as combining the simplicity of calculation with sufficient accounting of the physical nature of water supply and demand relating to droughts, the SPDI is promising to serve as a competent reference and an alternative for drought assessment and monitoring. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
187.
Within the framework of our discontinuous deformation analysis for rock failure algorithm, this paper presents a two‐dimensional coupled hydromechanical discontinuum model for simulating the rock hydraulic fracturing process. In the proposed approach, based on the generated joint network, the calculation of fluid mechanics is performed first to obtain the seepage pressure near the tips of existing cracks, and then the fluid pressure is treated as linearly distributed loads on corresponding block boundaries. The contribution of the hydraulic pressure to the initiation/propagation of the cracks is considered by adding the components of these blocks into the force matrix of the global equilibrium equation. Finally, failure criteria are applied at the crack tips to determine the occurrence of cracking events. Several verification examples are simulated, and the results show that this newly proposed numerical model can simulate the hydraulic fracturing process correctly and effectively. Although the numerical and experimental verifications focus on one unique preexisting crack, because of the capability of discontinuous deformation analysis in simulating block‐like structures, the proposed approach is capable of modeling rock hydraulic fracturing processes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
188.
River confluences and their associated tributaries are key morphodynamic nodes that play important roles in controlling hydraulic geometry and hyporheic water exchange in fluvial networks. However, the existing knowledge regarding hyporheic water exchange associated with river confluence morphology is relatively scarce. On January 14 and 15, 2016, the general hydraulic and morphological characteristics of the confluent meander bend (CMB) between the Juehe River and the Haohe River in the southern region of Xi'an City, Shaanxi Province, China, were investigated. The patterns and magnitudes of vertical hyporheic water exchange (VHWE) were estimated based on a one‐dimensional heat steady‐state model, whereas the sediment vertical hydraulic conductivity (Kv) was calculated via in situ permeameter tests. The results demonstrated that 6 hydrodynamic zones and their extensions were observed at the CMB during the test period. These zones were likely controlled by the obtuse junction angle and low momentum flux ratio, influencing the sediment grain size distribution of the CMB. The VHWE patterns at the test site during the test period mostly showed upwelling flow dominated by regional groundwater discharging into the river. The occurrence of longitudinal downwelling and upwelling patterns along the meander bend at the CMB was likely subjected to the comprehensive influences of the local sinuosity of the meander bend and regional groundwater discharge and finally formed regional and local flow paths. Additionally, in dominated upwelling areas, the change in VHWE magnitudes was nearly consistent with that in Kv values, and higher values of both variables generally occurred in erosional zones near the thalweg paths of the CMB, which were mostly made up of sand and gravel. This was potentially caused by the erosional and depositional processes subjected to confluence morphology. Furthermore, lower Kv values observed in downwelling areas at the CMB were attributed to sediment clogging caused by local downwelling flow. The confluence morphology and sediment Kv are thus likely the driving factors that cause local variations in the VHWE of fluvial systems.  相似文献   
189.
In the Tongshankou porphyry deposit (SE Hubei Province, South China), three types of K‐feldspars are recognized: (I) the phenocryst type in the porphyry that crystalized during the magmatic stage, (II) the megacryst type and (III) the vein type in the altered porphyry and orebody that was produced by hydrothermal fluids. A detailed in‐situ analysis of trace elements and Sr–Pb isotopes was carried out on K‐feldspars in an attempt to unravel their formation processes and to trace the element sources during potassic alteration. The Type III K‐feldspars show lower Sr contents and Sr‐isotope ratios but higher Pb contents and Pb‐isotope ratios than the Type I and II K‐feldspars, possibly reflecting a contribution from the country carbonate rocks with less radiogenic Sr but more radiogenic Pb sources, and indicate that the ore‐forming fluids and materials may have been partially derived from external sources such as the host sedimentary rocks during the early potassic alteration stage.  相似文献   
190.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号