Water relation characteristics of the desert legumeAlhagi sparsifolia were investigated during the vegetation period from April to September 1999 in the foreland of Qira oasis at the southern fringe of the Taklamakan Desert, Xinjiang Uygur Autonomous Region of China. The seasonal variation of predawn water potentials and of diurnal water potential indicated thatAlhagi plants were well water supplied over the entire vegetation period. Decreasing values in the summer months were probably attributed to increasing temperatures and irradiation and therefore a higher evapotranspirative demand. Data from pressure-volume analysis confirmed thatAlhagi plants were not drought stressed and xylem sap flow measurements indicated thatAlhagi plants used large amounts of water during the summer months. Flood irrigation had no influence on water relations inAlhagi probably becauseAlhagi plants produced only few fine roots in the upper soil layers. The data indicate thatAlhagi sparsifolia is a drought-avoiding species that utilizes ground water by a deep roots system, which is the key characteristic to adjust the hyper-arid environment. Because growth and survival ofAlhagi depends on ground water supply, it is important that variations of ground water depth are kept to a minimum. The study will provide a theoretical basis for the restoration and management of natural vegetation around oasis in arid regions.
The Tarim Basin in western China formed the easternmost margin of a shallow epicontinental sea that extended across Eurasia and was well connected to the western Tethys during the Paleogene. Climate modelling studies suggest that the westward retreat of this sea from Central Asia may have been as important as the Tibetan Plateau uplift in forcing aridification and monsoon intensification in the Asian continental interior due to the redistribution of the land‐sea thermal contrast. However, testing of this hypothesis is hindered by poor constraints on the timing and precise palaeogeographic dynamics of the retreat. Here, we present an improved integrated bio‐ and magnetostratigraphic chronological framework of the previously studied marine to continental transition in the southwest Tarim Basin along the Pamir and West Kunlun Shan, allowing us to better constrain its timing, cause and palaeoenvironmental impact. The sea retreat is assigned a latest Lutetian–earliest Bartonian age (ca. 41 Ma; correlation of the last marine sediments to calcareous nannofossil Zone CP14 and correlation of the first continental red beds to the base of magnetochron C18r). Higher up in the continental deposits, a major hiatus includes the Eocene–Oligocene transition (ca. 34 Ma). This suggests the Tarim Basin was hydrologically connected to the Tethyan marine Realm until at least the earliest Oligocene and had not yet been closed by uplift of the Pamir–Kunlun orogenic system. The westward sea retreat at ca. 41 Ma and the disconformity at the Eocene–Oligocene transition are both time‐equivalent with reported Asian aridification steps, suggesting that, consistent with climate modelling results, the sea acted as an important moisture source for the Asian continental interior. 相似文献
Abstract Values of incoming solar and long‐wave radiation measured at the vessel Quadra during the three phases of GATE are used to assess the daily performance of three models, one for solar and two for long‐wave radiation. The solar radiation model, which uses data on precipitable water and cloud amount at three levels in the atmosphere performed satisfactorily during the first phase but gave poor results in the other two phases when cumulonimbus became more dominant. Both the flux‐emissivity approach using measured and interpolated Upper air data and Paltridge's empirical procedure produced estimates of long‐wave radiation which compared very closely with the measurements. 相似文献
Zusammenfassung Eine Analyse der Randstrukturen des Witwatersrand-Beckens im nördlichen Oranje-Freistaat-Goldfeld zeigt, daß das tektonische Bild der Beckenrandregion nacheinander durch verschiedene Deformationsakte von unterschiedlichem Charakter geprägt worden ist. Auf eine Einengungsphase von spät-Witwatersrand-Alter, die zur Bildung einer randlichen Aufrichtungszone und zum Aufreißen eines Systems von 'normalen und antivergenten Aufschiebungen führte, folgte während des Unteren Ventersdorp eine jüngere Zerrungsphase, bei der es zu einem staffeiförmlgen Zerbrechen der ursprünglich eingeengten Scholle kam. Die Zerrung hängt sehr wahrscheinlich mit dem Zerbrechen der Beckenrandregion während oder unmittelbar nach der Extrusion der Unteren Ventersdorp-Laven zusammen. Dabei wurde ein schmaler randparalleler Streifen der Beckenfüllung in einem Graben versenkt ('Odendaalsrus-Graben). Die abgesunkenen Schollenteile sind in sich noch stark zerbrochen und gewöhnlich schiefgestellt. Da der versenkte Streifen durch ein primäres Einmuldungsstadium hindurchgegangen ist, deutet die Grabenbildung offenbar eine Fortsetzung der Beckenbildungsvorgänge 'mit anderen Mitteln an. — Die Bewegungen haben ein Alter von etwa 2,1 Mrd. Jahren; sie fallen somit ins frühe Präkambrium und sind keinesfalls 'intraalgonkisch, wie es noch bis in die jüngste Vergangenheit angenommen wurde.Tektonische Experimente haben ergeben, daß sich die wichtigsten Störungssysteme der realen Beckenrandstrukturen bei entsprechend gewählter Versuchsanordnung auch künstlich erzeugen lassen.
The Orange Free State goldfield represents the southernmost part of the Witwatersrand Basin (Fig. 1) which is completely buried under a cover of Ventersdorp and Karroo rocks. The pre-Karroo geology of this area is characterized by a major rift system trending SSW-NNE ('Odendaalsrus graben), followed to the east by a V-shaped horst and two minor rift blocks (Fig. 2). The main graben is bounded by two principal faults (Border Fault, De Bron Fault, Fig. 4) which are roughly parallel to the western rim of the basin.A tectonic analysis of the basin-edge structures in the northern part of the graben reveals that the basin rim has been subjected to a sequence of deformational acts working over a considerable period of time. A primary compression of the basin-edge region in Upper Witwatersrand times resulted in the formation of a marginal fold; since sedimentation continued, the different stages of the folding process were sometimes preserved by a set of minor unconformities within the youngest sediments (Elsburg A Reefs, Fig. 5). With increasing lateral pressure a couple of reverse faults developed to support the folding (faults No. 10 and 11, Figs. 6 and 7); the minor thrust faults No. 19 and 21 represent the second component of this fault system. A reconstruction of the original depositional plain of the Lower Agglomerate shows that the main thrust faults (No. 10 and 11) are definitely older than the Elsburg A 1 Reef and have been obviously revived after the younger sediments had been laid down (Fig. 8 a).In a later stage compression gave way to tensional forces bringing about a fracturing of the overturned limb of the marginal fold along normal faults (faults No. 4 and 7, Figs. 6 and 7). There is reason to believe that the tensional phase was associated with the incipient rifting during early Ventersdorp times and that these faults were more or less contemporaneous with the general tilting of the basin-edge as displayed to-day (cf. Figs. 3 and 4). Because of the westerly tilt the Boulder Beds dip towards the west, although they must have been originally deposited on a ± horizontal or slightly basinward dipping plain. Faulting was mostly accomplished before deposition of the Ventersdorp sediments and the Upper Ventersdorp Lavas took place; the latter are seldom or only to a small degree affected by the fractures (Figs. 3 and 4). — The age of the tectonics is about 2,1×109 years, i. e. early Precambrian and not Algonkian as formerly supposed.Experimental work aiming at an imitation of the observed basin-edge structures has shown that the principal tectonic features can be produced artificially (Figs. 8 a and b). This refers in particular to the main system of thrust-faults as well as to the younger step-faults caused by tension.
Résumé Les structures tectoniques au bord du Bassin de Witwatersrand dans le district de mines d'or septentrional de la République d'Orange (Afrique du Sud) ont été analysées. Il s'est montré qu'elles sont déterminées par l'action de plusieurs phases de déformation successives de caractères différents. Une phase de compression d'âge Witwatersrand supérieur a d'abord amené un redressement des couches dans une zone marginale du bassin, avec chevauchements à vergences «normales» et inverses. Elle était suivie pendant le Ventersdorp inférieur d'une phase de traction qui produisit des cassures en gradins dans le secteur primitivement comprimé. La traction est très vraisemblablement en relation avec l'effondrement de la zone marginale du bassin pendant ou peu après l'extrusion des laves inférieures de Ventersdorp. Une bande étroite de sédiments, parallèle au bord du bassin, fut alors affectée d'un affaissement (formation du «graben d'Odendaalsrus») où de nombreuses cassures à l'intérieur des compartiments affaissés ont résulté dans la formation de blocs plus ou moins inclinés. Puisque cette zone a d'abord passé par un stade synclinal, on a l'impression que l'effondrement du graben ne représente que la reprise de l'affaissement général du bassin à l'aide d'une «technique nouvelle». - Les mouvements ont un âge de 2.1 milliards d'années, ils datent par conséquent du Précambrien inférieur et ne sont point «intra-algonkiques» comme il fut encore admis tout récemment.Il a été possible de reproduire artificiellement les systèmes de failles les plus importants de la zone marginale du bassin, si les conditions de l'expériment étaient favorables.
Three kornerupine occurrences are reported in distinctive SiO2-poor, MgO- and Al2O3-rich paragneisses from the Namaqualand Metamorphic Complex in South Africa. Kornerupine coexists stably with phlogopite, cordierite, orthopyroxene, gedrite, sapphirine, sillimanite and plagioclase and, in sapphirine-free rocks, with spinel and corundum. Tourmaline of a texturally older generation than kornerupine is commonly present in the same samples.Ten analysed kornerupines show a variation in total Fe as FeO from 1.8 to 10.9 weight per cent. B2O3 contents are estimated from x-ray data and a few spectrochemical analyses to range from 0.9 to 3.5 weight per cent. There is a strong inverse correlation between B3+ and Al3+. Total iron content has a strong and systematic effect on refractive index, colour and dispersion. Fe and Mg are systematically partitioned with the other minerals, and Mg/(Mg+Fe) ratios increase as follows: spinel 相似文献
A small but growing number of voices have begun to raise questions about the current direction of children's geographies as a subfield and its status within the wider discipline. This article intervenes in these emerging discussions to examine the status of debate itself within children's geographies. I argue that children's geographies over the past decade has operated primarily in a consensus-based mode, with a number of potential tensions and differences between practitioners masked as a result. I develop the example of notions of children's competent social agency, a core theoretical assumption that is rarely interrogated in much depth. In closing, I pose questions regarding several contemporary political issues concerning children's agency about which geographers have had surprisingly little to say. I suggest that explicitly addressing some of these vexing issues would contribute to a richer state of debate within children's geographies. 相似文献
The response of the LLN 2-D climate model to the insolation and CO2 forcings during the Eemian interglacial is compared to reconstructions obtained from deep-sea cores drilled in the Norwegian
Sea and in the North Atlantic. Both reconstructions and modeling results show a decrease of sea-surface temperature (SST)
in the higher latitudes (70–75 °N zonal belt for the model and the Norwegian Sea for the proxy records), associated with a
more moderate cooling at lower latitudes (50–55 °N and North Atlantic), at the middle of isotopic substage 5e, several millenia
before the beginning of continental ice-sheet growth. Such a comparison between the simulated SST and ice volume of the Northern
Hemisphere has been extended to the whole last glacial-interglacial cycle. The influence of the insolation forcing on SST
and the shortcomings of the model due to its zonal character are discussed.
Received: 6 July 1995/Accepted: 19 December 1995 相似文献
All proposed gravitational explanations of the Pioneer anomaly must crucially face the Equivalence Principle. Thus, if Pioneers 10 and 11 were influenced by anomalous gravitational effects in regions containing other Solar System bodies, then those bodies should likewise be influenced, irrespective of their shape, composition or mass. Although the lack of any observed influence upon planetary orbits severely constrains such explanations, here we aim to construct by computer modeling, hypothetical gravitating annuli having no gravitational impact on planetary orbits from Mercury to Neptune. One model has a central zone, free of radial gravitation in the annular plane, and an ‘onset’ beyond Saturn’s orbit, where sunward annular gravitation increases to match the Pioneer anomaly data. Sharp nulls are included so that Uranus and Neptune escape this influence. Such models can be proportionately reduced in mass: a 1 % contribution to the anomaly requires an annulus of approximately 1 Earth mass. It is thus possible to comply with the JPL assessment of newly recovered data attributing 80 %, or more, of the anomaly to spacecraft heat, which appears to allow small contributions from other causes. Following the possibility of an increasing Kuiper belt density at great ranges, another model makes an outward small anomalous gravitation in the TNO region, tallying with an observed slight indication of such an effect, suggesting that New Horizons may slightly accelerate in this region. 相似文献