全文获取类型
收费全文 | 706篇 |
免费 | 34篇 |
国内免费 | 4篇 |
专业分类
测绘学 | 20篇 |
大气科学 | 57篇 |
地球物理 | 173篇 |
地质学 | 239篇 |
海洋学 | 78篇 |
天文学 | 60篇 |
综合类 | 2篇 |
自然地理 | 115篇 |
出版年
2024年 | 1篇 |
2023年 | 2篇 |
2022年 | 5篇 |
2021年 | 15篇 |
2020年 | 18篇 |
2019年 | 19篇 |
2018年 | 30篇 |
2017年 | 35篇 |
2016年 | 31篇 |
2015年 | 26篇 |
2014年 | 39篇 |
2013年 | 37篇 |
2012年 | 39篇 |
2011年 | 70篇 |
2010年 | 37篇 |
2009年 | 38篇 |
2008年 | 40篇 |
2007年 | 38篇 |
2006年 | 25篇 |
2005年 | 26篇 |
2004年 | 34篇 |
2003年 | 28篇 |
2002年 | 17篇 |
2001年 | 7篇 |
2000年 | 9篇 |
1999年 | 8篇 |
1998年 | 4篇 |
1997年 | 5篇 |
1996年 | 2篇 |
1995年 | 7篇 |
1994年 | 4篇 |
1993年 | 5篇 |
1992年 | 6篇 |
1991年 | 2篇 |
1990年 | 6篇 |
1989年 | 1篇 |
1988年 | 8篇 |
1987年 | 2篇 |
1986年 | 2篇 |
1984年 | 4篇 |
1983年 | 2篇 |
1982年 | 1篇 |
1981年 | 1篇 |
1980年 | 1篇 |
1979年 | 2篇 |
1978年 | 3篇 |
1977年 | 1篇 |
1967年 | 1篇 |
排序方式: 共有744条查询结果,搜索用时 15 毫秒
711.
Evaluating the effects of anthropogenic activities is dependent upon data collection prior to impact, though funds are rarely allocated to conduct an assessment before a critical need arises. The Savannah Harbor Expansion Project is one such activity that includes dredging of the Savannah River. It may potentially change physical conditions of the estuary thereby altering fish assemblages. The purpose of the present study was to characterize pre-impact fish assemblages along a salinity gradient near the mouth of the river and determine which abiotic factors most influence them. One site within the mouth of the Savannah River and two sites immediately outside the river mouth were sampled monthly for 2 years using both a beam trawl and seine net. Salinity, temperature, dissolved oxygen, and sediment grain size were assessed. All four factors had a significant effect on fish assemblages. A total of 3943 fishes representing ≥55 species formed three statistically distinct fish assemblages and at least three seasonal assemblages. Only 24 species (43.6 %) were collected by both gear types indicating the importance of using multiple gear types to assess fish assemblages. We conclude that the fish assemblages near the mouth of the Savannah River may be altered or may shift given the predicted increase in salinity and/or the possible changes in sediment composition from channel dredging. Understanding the abiotic factors that most influence spatial and seasonal fish distributions prior to dredging will be invaluable in predicting how organisms will be impacted by similar public projects elsewhere. 相似文献
712.
Jennifer M. Mangan Jonathan T. Overpeck Robert S. Webb Carol Wessman Alexander F. H. Goetz 《Climatic change》2004,63(1-2):49-90
The Nebraska Sand Hills exist in a semi-arid climatic environment and the land surface is grassland growing on sandy soils. These soils have been periodically active throughout the Holocene, but are currently stabilized by the vegetation. However, a shift in climate could cause grassland death and eventual sand dune remobilization. Our studies used the CENTURY nutrient cycling and ecosystem model to investigate the impacts of drought, plant functional type, fire, grazing, and erosion on Nebraska Sand Hills vegetation and dune stability. Fire and grazing alone had little impact on the vegetation, but when combined with mild drought, biomass decreased. Overall biomass increased if one plant functional type was allowed to dominate the ecosystem. Addition of as little as 1 mm of erosion per year under current climate conditions decreases vegetation as much as a drought 20 percent drier than the worst of the 1930s drought years in Nebraska. 相似文献
713.
After wildfire, hillslope and channel erosion produce large amounts of sediment and can contribute significantly to long-term erosion rates. However, pre-erosion high-resolution topographic data (e.g. lidar) is often not available and determining specific contributions from post-fire hillslope and channel erosion is challenging. The impact of post-fire erosion on landscape evolution is demonstrated with Structure from Motion (SfM) Multi-View Stereo (MVS) photogrammetry in a 1 km2 Idaho Batholith catchment burned in the 2016 Pioneer Fire. We use SfM-MVS to quantify post-fire erosion without detailed pre-erosion topography and hillslope transects to improve estimates of rill erosion at adequate spatial scales. Widespread rilling and channel erosion produced a runoff-generated debris-flow following modest precipitation in October 2016. We implemented unmanned aerial vehicle (UAV)-based SfM-MVS to derive a 5 cm resolution digital elevation model (DEM) of the channel scoured by debris-flow. In the absence of cm-resolution pre-erosion topography, a synthetic surface was defined by the debris-flow scour's geomorphic signature and we used a DEM of Difference (DoD) to map and quantify channel erosion. We found 3467 ± 422 m3 was eroded by debris-flow scour. Rill dimensions along hillslope transects and Monte Carlo simulation show rilling eroded ~1100 m3 of sediment and define a volume uncertainty of 29%. The total eroded volume (4600 ± 740 m3) we measured in our study catchment is partitioned into 75% channel erosion and 25% rill erosion, reinforcing the importance of catchment size on erosion process-dominance. The deposit volume from the 2016 event was 5700 ± 1140 m3, indicating ~60% contribution from post-fire channel erosion. Dating of charcoal fragments preserved in stratigraphy at the catchment outlet, and reconstructions of prior deposit volumes provide a record of Holocene fire-related debris-flows at this site; results suggest that episodic wildfire-driven erosion (~6 mm/year) dominate millennial-scale erosion (~5 mm/Ka) at this site. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd. 相似文献
714.
715.
Soil moisture state and variability control many hydrological and ecological processes as well as exchanges of energy and water between the land surface and the atmosphere. However, its state and variability are poorly understood at spatial scales larger than the fields (i.e. 1 km2) as well as the ability to extrapolate field scale to larger spatial scales. This study investigates soil moisture profiles, their spatial organization, and physical drivers of variability within the Walnut Creek watershed, Iowa, during Soil Moisture Experiment 2005 and relates the watershed scale findings to previous field‐scale results. For all depths, the watershed soil moisture variability was negatively correlated with the watershed mean soil moisture and followed an exponential relationship that was nearly identical to that for field scales. This relationship differed during drying and wetting. While the overall time stability characteristics were improved with observation depth, the relatively wet and dry locations were consistent for all depths. The most time stable locations, capturing the mean soil moisture of the watershed within ± 0·9% volumetric soil moisture, were typically found on hill slopes regardless of vegetation type. These mild slope locations consistently preserve the time stability patterns from field to watershed scales. Soil properties also appear to impact stability but the findings are sensitive to local variations that may not be well defined by existing soil maps. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
716.
Samuel E. Tuttle Jennifer M. Jacobs Carrie M. Vuyovich Carrie Olheiser Eunsang Cho 《水文研究》2018,32(6):817-829
In the Northern Great Plains, melting snow is a primary driver of spring flooding, but limited knowledge of the magnitude and spatial distribution of snow water equivalent (SWE) hampers flood forecasting. Passive microwave remote sensing has the potential to enhance operational river flow forecasting but is not routinely incorporated in operational flood forecasting. We compare satellite passive microwave estimates from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR‐E) to the National Oceanic and Atmospheric Administration Office of Water Prediction (OWP) airborne gamma radiation snow survey and U.S. Army Corps of Engineers (USACE) ground snow survey SWE estimates in the Northern Great Plains from 2002 to 2011. AMSR‐E SWE estimates compare favourably with USACE SWE measurements in the low relief, low vegetation study area (mean difference = ?3.8 mm, root mean squared difference [RMSD] = 34.7 mm), but less so with OWP airborne gamma SWE estimates (mean difference = ?9.5 mm, RMSD = 42.7 mm). An error simulation suggests that up to half of the error in the former comparison is potentially due to subpixel scale SWE variability, limiting the maximum achievable RMSD between ground and satellite SWE to approximately 26–33 mm in the Northern Great Plains. The OWP gamma versus AMSR‐E SWE comparison yields larger error than the point‐scale USACE versus AMSR‐E comparison, despite a larger measurement footprint (5–7 km2 vs. a few square centimetres, respectively), suggesting that there are unshared errors between the USACE and OWP gamma SWE data. 相似文献
717.
Jennifer L. Triplett Kingston Paul R. Dahlen Paul C. Johnson 《Ground Water Monitoring & Remediation》2012,32(3):41-51
A recent study assessing the state‐of‐the‐practice of in situ thermal remediation technologies (e.g., electrical resistive heating [ERH], conductive heating, steam‐based heating, in situ large‐diameter auger soil mixing with steam/hot air injection, and radio‐frequency heating) identified 182 applications in the 1988 to 2007 period and summarized the geologic settings in which these technologies were applied, chemicals treated, design parameters, and operating conditions. That study concluded that documentation for less than 8% of those applications contained sufficient data to assess the effect remediation had on groundwater quality. Consequently, post‐treatment data were collected at five ERH sites, with emphasis on assessing reductions in dissolved groundwater concentrations and mass discharge (mass flux) to the aquifer. For each site, dissolved groundwater concentrations and hydraulic conductivities were determined across a vertical transect oriented perpendicular to groundwater flow and at the downgradient edge of the treatment zone. Dissolved concentration and mass discharge reductions ranged from about less than 10× to 100×, with post‐treatment groundwater concentrations ranging from about 101 to 104μg/L and mass discharges ranging from about 10–1 to 102 kg/y. The primary factors differentiating sites with greater and lesser dissolved concentration and mass discharge reductions were the adequacy of pre‐treatment source zone delineation, the extent to which the treatment zone encompassed the source zone, and the duration of treatment at the design operating temperature. The results suggest that ERH systems are capable of reducing groundwater concentrations to 10 to 100 μg/L levels and lower in some settings, but only if the source zone is adequately delineated and fully encompassed by the treatment system, and the treatment system is operated for a sufficiently long period of time. 相似文献
718.
Rates of in situ microbial sulfate reduction in response to geochemical perturbations were determined using Native Organism Geochemical Experimentation Enclosures (NOGEEs), a new in situ technique developed to facilitate evaluation of controls on microbial reaction rates. NOGEEs function by first trapping a native microbial community in situ and then subjecting it to geochemical perturbations through the introduction of various test solutions. On three occasions, NOGEEs were used at the Norman Landfill research site in Norman, Oklahoma, to evaluate sulfate-reduction rates in wetland sediments impacted by landfill leachate. The initial experiment, in May 2007, consisted of five introductions of a sulfate test solution over 11 d. Each test stimulated sulfate reduction with rates increasing until an apparent maximum was achieved. Two subsequent experiments, conducted in October 2007 and February 2008, evaluated the effects of concentration on sulfate-reduction rates. Results from these experiments showed that faster sulfate-reduction rates were associated with increased sulfate concentrations. Understanding variability in sulfate-reduction rates in response to perturbations may be an important factor in predicting rates of natural attenuation and bioremediation of contaminants in systems not at biogeochemical equilibrium. 相似文献
719.
720.
Laurent O. Amoudry Rafael Ramirez-Mendoza Alejandro J. Souza Jennifer M. Brown 《Ocean Dynamics》2014,64(5):707-722
We investigate the dynamics of suspended sediment transport in a hypertidal estuarine channel which displays a vertically sheared exchange flow. We apply a three-dimensional process-based model coupling hydrodynamics, turbulence and sediment transport to the Dee Estuary, in the north-west region of the UK. The numerical model is used to reproduce observations of suspended sediment and to assess physical processes responsible for the observed suspended sediment concentration patterns. The study period focuses on a calm period during which wave-current interactions can reasonably be neglected. Good agreement between model and observations has been obtained. A series of numerical experiments aim to isolate specific processes and confirm that the suspended sediment dynamics result primarily from advection of a longitudinal gradient in concentration during our study period, combined with resuspension and vertical exchange processes. Horizontal advection of sediment presents a strong semi-diurnal variability, while vertical exchange processes (including time-varying settling as a proxy for flocculation) exhibit a quarter-diurnal variability. Sediment input from the river is found to have very little importance, and spatial gradients in suspended concentration are generated by spatial heterogeneity in bed sediment characteristics and spatial variations in turbulence and bed shear stress. 相似文献