首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   208篇
  免费   3篇
  国内免费   4篇
测绘学   4篇
大气科学   28篇
地球物理   45篇
地质学   86篇
海洋学   1篇
天文学   41篇
综合类   4篇
自然地理   6篇
  2022年   2篇
  2021年   3篇
  2020年   3篇
  2019年   3篇
  2018年   7篇
  2017年   4篇
  2016年   4篇
  2015年   6篇
  2014年   3篇
  2013年   5篇
  2012年   8篇
  2011年   6篇
  2010年   5篇
  2009年   6篇
  2008年   15篇
  2007年   8篇
  2006年   7篇
  2005年   3篇
  2004年   6篇
  2002年   2篇
  2001年   5篇
  2000年   3篇
  1999年   2篇
  1998年   3篇
  1997年   6篇
  1995年   3篇
  1994年   5篇
  1993年   2篇
  1992年   4篇
  1990年   2篇
  1988年   2篇
  1987年   5篇
  1986年   3篇
  1985年   4篇
  1984年   7篇
  1983年   5篇
  1982年   5篇
  1981年   3篇
  1980年   4篇
  1979年   5篇
  1978年   2篇
  1977年   1篇
  1976年   3篇
  1975年   5篇
  1974年   1篇
  1973年   5篇
  1972年   3篇
  1971年   4篇
  1970年   3篇
  1969年   1篇
排序方式: 共有215条查询结果,搜索用时 15 毫秒
51.
52.
Fractional calculus and special functions have contributed a lot to mathematical physics and its various branches.The great use of mathematical physics in distinguished astrophysical problems has attracted astronomers and physicists to pay more attention to available mathematical tools that can be widely used in solving several problems of astrophysics/physics.In view of the great importance and usefulness of kinetic equations in certain astrophysical problems,the authors derive a generalized fractional kin...  相似文献   
53.
54.
A refined mathematical equation is proposed to quantify the ambient activity of water during granulite fades metamorphism. The thermodynamic calculations point to the low activity of water during metamorphism in the area around Anakapalle, Vishakhapatnam district, A.P. Carbonic metamorphism seems to be responsible for the low activity of water during this metamorphism. Calc-silicate rocks in the area, could have been the source of the CO2.  相似文献   
55.
56.
Thermotectonic history of the Trans-Himalayan Ladakh Batholith in the Kargil area, N. W. India, is inferred from new age data obtained here in conjunction with previously published ages. Fission-track (FT) ages on apatite fall around 20±2 Ma recording cooling through temperatures of ∼100°C and indicating an unroofing of 4 km of the Ladakh Range since the Early Miocene. Coexisting apatite and zircon FT ages from two samples in Kargil show the rocks to have cooled at an average rate of 5–6°C/Ma in the past 40 Ma. Zircon FT ages together with mica K−Ar cooling ages from the Ladakh Batholith cluster around 40–50 Ma, probably indicating an Eocene phase of uplift and erosion that affected the bulk of the batholith after the continental collision of India with the Ladakh arc at 55 Ma. Components of the granitoids in Upper Eocene-Lower Oligocene sediments of the Indus Molasse in Ladakh supports this idea. Three hornblende K−Ar ages of 90 Ma, 55 Ma, and 35 Ma are also reported; these distinctly different ages probably reflect cooling through 500–550°C of three phases of I-type plutonism in Ladakh also evidenced by other available radiometric data: 102 Ma (mid-Cretaceous), 60 Ma (Palaeocene), and 40 Ma (Late Eocene); the last phase being localised sheet injections. The geodynamic implications of the age data for the India-Asia collision are discussed.  相似文献   
57.
M.Lal 《大气科学进展》1994,11(2):239-246
The global mean surface temperature may rise by about 0.3oC per decade during the next Few decades as a result of anthropogenic greenhouse gas emissions in the earth’s atmosphere. The data generated in the greenhouse warming simulations (Business-as-Usual scenario of IPCC) with the climate models developed at Max Planck Institute for Meteorology, Hamburg have been used to assess future plausible hydrological scenario for the South Asian region. The model results indicate enhanced surface warming (2.7oC for summer and 3.6oC for winter) over the land regions of South Asia during the next hundred years. While there is no significant change in the precipitation over most of the land regions during winter, substantial increase in precipitation is likely to occur during summer. As a result, an increase in soil moisture is likely over central India, Bangladesh and South China during summer but a statistically sig-nificant decline in soil moisture is expected over central China in winter. A moderate decrease in surface runoff may occur over large areas of central China during winter while the flood prone areas of NE-India. Bangladesh and South China are likely to have an increase in surface runoff during summer by the end of next century.  相似文献   
58.
The first thermoluminescence (TL) dates of pottery from aRamayana associated site are reported. The TL dates for pre-NBPW Black-Slipped Ware levels are 730 and 765 B.C., while radiocarbon date takes the earliest Black Slipped Ware level (for which no TL dates are available) to 905 B.C. (uncorrected). For the OCW level, three TL dates are available which range from 1035 B.C. to 875 B.C. The early NBPW period believed to be associated with theRamayana episode will thus be post-750 B.C.  相似文献   
59.
The significant discordance of the radiometric (Rb-Sr, Pb-U, K-Ar and fission track) ages from various orogenic cycles of the Dharwar, Satpura, Aravalli and Himalayan orogenic belts in India, coupled with their corresponding blocking temperatures for various radiometric clocks in whole rocks and minerals, has been used to evaluate the cooling and the uplift histories of the respective orogenic belts. The blocking temperatures used in the present study of various Rb-Sr (isotopic homogenization at 600°C, muscovite at 500°C and biotite at 300°C), Pb-U (monazite at 530°C), K-Ar (muscovite at 350°C and biotite at 300°C) and fission-track clock (zircon at 350°C, sphene at 300°C, garnet at 280°C, muscovite at 130°C, hornblende at 120°C and apatite at 100°C for the cooling rate l°C/Ma) have been found suitable to explain the differences in mineral ages by different radiometric techniques. The nature of the cooling curves drawn using the temperature versus age data for various orogenic cycles in India has also been discussed. The cooling and the uplift patterns determined for various orogenic cycles of India, suggest comparatively slow cooling (5.0–0.2°C/Ma) and uplift (180–2 m/Ma) for the Peninsular regions and rapid cooling (25.0–1.0° C/Ma) and fast uplift (800–30 m/Ma) during the Himalayan Orogenic Cycle (Upper Cretaceous—Tertiary) in the Extra-Peninsular region.  相似文献   
60.
Six soil samples from various depths of the Luna 24 drill core column have been analysed for their particle track records and light noble gas compositions. The observed particle track records indicate higher degree of maturity for the upper zone (~1 m) of this regolith column as compared to the soils in the lower zone (~0.4 m). The cosmogenic21Ne concentrations decrease rapidly with depth to 1 m, after which the concentrations level off or increase slightly. These data suggest a multi-stage depositional history for this drill core soil column consisting of: (1) rapid deposition of regolith material, (2) a cratering event about 400 m.y. B.P., leading to excavation to a depth of ~1 m from the present regolith surface, (3) a relatively rapid fill up of the crater with near-surface irradiated material, and (4) in-situ irradiation during the last about 250–300 m.y. Such a depositional sequence can also explain the observed lack of correlation between different surface exposure-correlated maturity indices in these drill core soil samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号