首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11979篇
  免费   927篇
  国内免费   199篇
测绘学   415篇
大气科学   1299篇
地球物理   3675篇
地质学   4793篇
海洋学   651篇
天文学   1505篇
综合类   215篇
自然地理   552篇
  2023年   36篇
  2022年   58篇
  2021年   146篇
  2020年   152篇
  2019年   121篇
  2018年   731篇
  2017年   691篇
  2016年   664篇
  2015年   458篇
  2014年   482篇
  2013年   684篇
  2012年   1034篇
  2011年   807篇
  2010年   487篇
  2009年   522篇
  2008年   389篇
  2007年   325篇
  2006年   331篇
  2005年   989篇
  2004年   1012篇
  2003年   783篇
  2002年   322篇
  2001年   187篇
  2000年   136篇
  1999年   95篇
  1998年   93篇
  1997年   125篇
  1996年   71篇
  1995年   80篇
  1994年   79篇
  1993年   51篇
  1992年   36篇
  1991年   51篇
  1990年   72篇
  1989年   40篇
  1988年   27篇
  1987年   50篇
  1986年   32篇
  1985年   41篇
  1984年   48篇
  1983年   42篇
  1982年   40篇
  1981年   46篇
  1980年   29篇
  1979年   29篇
  1978年   23篇
  1977年   24篇
  1975年   23篇
  1974年   21篇
  1973年   29篇
排序方式: 共有10000条查询结果,搜索用时 312 毫秒
921.
We present here the annual behavior of atmospheric water vapor on Mars, as observed by the OMEGA spectrometer on board Mars Express during its first martian year. We consider all the different features of the cycle of water vapor: temporal evolution, both at a seasonal and at a diurnal scale; longitudinal distribution; and the vertical profile, through the variations in the saturation height. We put our results into the context of the current knowledge on the water cycle through a systematic comparison with the already published datasets. The seasonal behavior is in very good agreement with past and simultaneous retrievals both qualitatively and quantitatively, within the uncertainties. The average water vapor abundance during the year is ∼10 pr. μm, with an imbalance between northern and southern hemisphere, in favor of the first. The maximum of activity, up to 60 pr. μm, occurs at high northern latitudes during local summer and shows the dominance of the northern polar cap within the driving processes of the water cycle. A corresponding maximum at southern polar latitudes during the local summer is present, but less structured and intense. It reaches ∼25 pr. μm at its peak. Global circulation has some influence in shaping the water cycle, but it is less prominent than the results from previous instruments suggest. No significant correlation between water vapor column density and local hour is detected. We can constrain the amount of water vapor exchanged between the surface and the atmosphere to few pr. μm. This is consistent with recent results by OMEGA and PFS-LW. The action of the regolith layer on the global water cycle seems to be minor, but it cannot be precisely constrained. The distribution of water vapor on the planet, after removing the topography, shows the already known two-maxima system, over Tharsis and Arabia Terra. However, the Arabia Terra increase is quite fragmented compared with previous observations. A deep zone of minimum separates the two regions. The saturation height of water vapor is mainly governed by the variations of insolation during the year. It is confined within 5-15 km from the surface at aphelion, while in the perihelion season it stretches up to 55 km of altitude.  相似文献   
922.
We present and interpret observations of two morphologically homologous flares that occurred in active region (AR) NOAA 10501 on 20 November 2003. Both flares displayed four homologous Hα ribbons and were both accompanied by coronal mass ejections (CMEs). The central flare ribbons were located at the site of an emerging bipole in the centre of the active region. The negative polarity of this bipole fragmented in two main pieces, one rotating around the positive polarity by ≈ 110° within 32 hours. We model the coronal magnetic field and compute its topology, using as boundary condition the magnetogram closest in time to each flare. In particular, we calculate the location of quasi-separatrix layers (QSLs) in order to understand the connectivity between the flare ribbons. Though several polarities were present in AR 10501, the global magnetic field topology corresponds to a quadrupolar magnetic field distribution without magnetic null points. For both flares, the photospheric traces of QSLs are similar and match well the locations of the four Hα ribbons. This globally unchanged topology and the continuous shearing by the rotating bipole are two key factors responsible for the flare homology. However, our analyses also indicate that different magnetic connectivity domains of the quadrupolar configuration become unstable during each flare, so that magnetic reconnection proceeds differently in both events.  相似文献   
923.
We present a statistical study of the characteristics of type-II radio bursts observed in the metric (m) and deca-hectometer (DH) wavelength range during 1997–2008. The collected events are divided into two groups: Group I contains the events of m-type-II bursts with starting frequency ≥ 100 MHz, and group II contains the events with starting frequency of m-type-II radio bursts < 100 MHz. We have analyzed both samples considering three different aspects: i) statistical properties of type-II bursts, ii) statistical properties of flares and CMEs associated with type-II bursts, and iii) time delays between type-II bursts, flares, and CMEs. We find significant differences in the properties of m-type-II bursts in duration, bandwidth, drift rate, shock speed and delay between m- and DH-type-II bursts. From the timing analysis we found that the majority of m-type-II bursts in both groups occur during the flare impulsive phase. On the other hand, the DH-type-II bursts in both groups occur during the decaying phase of the associated flares. Almost all m-DH-type-II bursts are found to be associated with CMEs. Our results indicate that there are two kinds of shock in which group I (high frequency) m-type-II bursts seem to be ignited by flares whereas group II (low frequency) m-type-II bursts are CME-driven.  相似文献   
924.
The activity minimum between the end of cycle 23 and the beginning of cycle 24 was the longest and deepest since at least the beginning of the 20th century. This has led to speculation that the Sun is changing its behaviour. The sunspot number and 10.7-cm solar radio flux indices have traditionally been highly correlated, so a change in the relationship between them might flag at such a change. An examination of this relationship suggests a significant change in the relationship between activity in the photosphere and in the chromosphere/corona happened soon after the maximum of cycle 23 and has continued into cycle 24. However, there are indications of change as early as 1980.  相似文献   
925.
To determine where to search for life in our solar system or in other extrasolar systems, the concept of habitability has been developed, based on the only sample we have of a biological planet—the Earth. Habitability can be defined as the set of the necessary conditions for an active life to exist, even if it does not exist. In astronomy, a habitable zone (HZ) is the zone defined around a sun/star, where the temperature conditions allow liquid water to exist on its surface. This habitability concept can be considered from different scientific perspectives and on different spatial and time scales. Characterizing habitability at these various scales requires interdisciplinary research. In this article, we have chosen to develop the geophysical, geological, and biological aspects and to insist on the need to integrate them, with a particular focus on our neighboring planets, Mars and Venus. Important geodynamic processes may affect the habitability conditions of a planet. The dynamic processes, e.g., internal dynamo, magnetic field, atmosphere, plate tectonics, mantle convection, volcanism, thermo-tectonic evolution, meteorite impacts, and erosion, modify the planetary surface, the possibility to have liquid water, the thermal state, the energy budget, and the availability of nutrients. They thus play a role in the persistence of life on a planet. Earth had a liquid water ocean and some continental crust in the Hadean between 4.4 and 4.0 Ga (Ga: billions years ago), and may have been habitable very early on. The origin of life is not understood yet; but the oldest putative traces of life are early Archean (~3.5 Ga). Studies of early Earth habitats documented in the rock record hosting fossil life traces provide information about possible habitats suitable for life beyond Earth. The extreme values of environmental conditions in which life thrives today can also be used to characterize the “envelope” of the existence of life and the range of potential extraterrestrial habitats. The requirement of nutrients by life for biosynthesis of cellular constituents and for growth, reproduction, transport, and motility may suggest that a dynamic and rocky planet with hydrothermal activity and formation of relief, liquid water alteration, erosion, and runoff is required to replenish nutrients and to sustain life (as we know it). The concept of habitability is very Earth-centric, as we have only one biological planet to study. However, life elsewhere would most probably be based on organic chemistry and leave traces of its past or recent presence and metabolism by modifying microscopically or macroscopically the physico-chemical characteristics of its environment. The extent to which these modifications occur will determine our ability to detect them in astrobiological exploration. Looking at major steps in the evolution of life may help determining the probability of detecting life (as we know it) beyond Earth and the technology needed to detect its traces, be they morphological, chemical, isotopic, or spectral.  相似文献   
926.
We report on two small aperture robotic telescopes called BART and D50 operated in Ondřejov. Both telescopes are capable of automatic observation of gamma ray burst (GRB) optical afterglows. Coordinates of GRBs are taken from alerts distributed via Internet. Telescopes observe other interesting high energy sources when there is not any alert. The smaller telescope BART has aperture D = 254 mm. The bigger telescope D50 has a primary mirror of diameter D = 500 mm. Both telescopes are controlled by free software package RTS2 and are accessible through Internet. We describe the two telescopes and related software and show some results such as our first observed optical counterpart of GRB.  相似文献   
927.
The question whether the solar chemical composition is typical for solar-type stars is analysed by comparing the Sun with different stellar samples, including a sample of stars with very similar parameters, solar twins. Although typical in terms of overall metallicity for stars of solar age and galactic orbit, the solar atmosphere is found to have abundances, as compared with solar twins, that indicate that its gas has once been affected by dust formation and dust separation. It is concluded that this may be related to the formation of the solar planetary system and its special properties.  相似文献   
928.
In understanding the nucleosynthesis of the elements in stars, one of the most important quantities is the reaction rate and it must be evaluated in terms of the stellar temperature T, and its determination involves the knowledge of the excitation function σ(E) of the specific nuclear reaction leading to the final nucleus. In this paper, the effect of thermonuclear reaction rates to the pre-main sequence evolution of low mass stars having masses 0.7, 0.8, 0.9 and 1M are studied by using our modified Stellar Evolutionary Program.  相似文献   
929.
We report the results of a multi-instrument, multi-technique, coordinated study of the solar eruptive event of 13 May 2005. We discuss the resultant Earth-directed (halo) coronal mass ejection (CME), and the effects on the terrestrial space environment and upper Earth atmosphere. The interplanetary CME (ICME) impacted the Earth’s magnetosphere and caused the most-intense geomagnetic storm of 2005 with a Disturbed Storm Time (Dst) index reaching ?263 nT at its peak. The terrestrial environment responded to the storm on a global scale. We have combined observations and measurements from coronal and interplanetary remote-sensing instruments, interplanetary and near-Earth in-situ measurements, remote-sensing observations and in-situ measurements of the terrestrial magnetosphere and ionosphere, along with coronal and heliospheric modelling. These analyses are used to trace the origin, development, propagation, terrestrial impact, and subsequent consequences of this event to obtain the most comprehensive view of a geo-effective solar eruption to date. This particular event is also part of a NASA-sponsored Living With a Star (LWS) study and an on-going US NSF-sponsored Solar, Heliospheric, and INterplanetary Environment (SHINE) community investigation.  相似文献   
930.
I recount my career in solar physics beginning at Ondřejov Observatory in 1948 and ending with my ∼30 year stay at the Laboratory of Space Research in Utrecht.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号