首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11979篇
  免费   927篇
  国内免费   199篇
测绘学   415篇
大气科学   1299篇
地球物理   3675篇
地质学   4793篇
海洋学   651篇
天文学   1505篇
综合类   215篇
自然地理   552篇
  2023年   36篇
  2022年   58篇
  2021年   146篇
  2020年   152篇
  2019年   121篇
  2018年   731篇
  2017年   691篇
  2016年   664篇
  2015年   458篇
  2014年   482篇
  2013年   684篇
  2012年   1034篇
  2011年   807篇
  2010年   487篇
  2009年   522篇
  2008年   389篇
  2007年   325篇
  2006年   331篇
  2005年   989篇
  2004年   1012篇
  2003年   783篇
  2002年   322篇
  2001年   187篇
  2000年   136篇
  1999年   95篇
  1998年   93篇
  1997年   125篇
  1996年   71篇
  1995年   80篇
  1994年   79篇
  1993年   51篇
  1992年   36篇
  1991年   51篇
  1990年   72篇
  1989年   40篇
  1988年   27篇
  1987年   50篇
  1986年   32篇
  1985年   41篇
  1984年   48篇
  1983年   42篇
  1982年   40篇
  1981年   46篇
  1980年   29篇
  1979年   29篇
  1978年   23篇
  1977年   24篇
  1975年   23篇
  1974年   21篇
  1973年   29篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
111.
We analyze the UV and X-ray data obtained by the SMM satellite for the flare starting at 02:36 UT on November 12, 1980 in AR 2779. From a detailed revision of the Ov emission, we find that the observations are compatible with energy being released in a zone above the magnetic inversion line of the AR intermediate bipole. This energy is then transported mainly by conduction towards the two distant kernels located in the AR main bipole. One of these kernels is first identified in this paper. Accelerated particles contribute to the energy transport only during the impulsive phase.We model the observed longitudinal magnetic field by means of a discrete number of subphotospheric magnetic poles, and derive the magnetic field overall topology. As in previous studies of chromospheric flares, the Ov kernels are located along the intersection of the computed separatrices with the photosphere. Especially where the field-line linkage changes discontinuously, these kernels can be linked in pairs by lines that extend along separatrices. Our results agree with the hypothesis of magnetic energy released by magnetic reconnection occurring on separatrices.  相似文献   
112.
We have calculated the circumstellar extinction curves produced by dust grains which absorb and scatter the stellar radiation in the shells of pre-main-sequence stars. A Monte Carlo method was used to model the radiative transfer in non-spherical shells. The dependence on the particle size distribution and the dust shell parameters has been examined.The application of the theoretical results to explain the extinction and polarization of the Herbig Be star HD 45677 shows that the dust shell is not disk-like and that very small grains are absent in it.  相似文献   
113.
New thermal profiles of Jupiter are retrieved from recent far infrared spectral measurements and for H2 mixing ratios varying from 0.8 to 0.94. The effective temperature corresponding to the inferred thermal profile is 123.15 ± 0.35°K. Far-infrared brightness temperature spectra computed from these profiles are compared to experimental data including measurements made at high spectral resolution in the NH3ν2 band at 10 μm and in NH3 pure rotational bands between 40 and 110 μm. It is found that a strong depletion of NH3 does occur in the Jovian stratosphere and that ammonia seems to be undersaturated in the upper troposphere.  相似文献   
114.
The discrepancy between the overhead E-region current and the magnetic D-component is studied using data obtained by the Chatanika incoherent scatter radar (L = 5.6). The F-region horizontal current is estimated to be too small to cause the observed D-deflection. Also, the assumption that the magnetic effects of the Pedersen and field-aligned currents cancel each other on the ground is shown to be inadequate to solve the problem. The significance of the inclination angle in the data analysis and the importance of the field-aligned current sheets are discussed.  相似文献   
115.
116.
We show the existence of a general relation between the parameters of periodic solutions in dynamical systems with ignorable coordinates. In particular, for time-independent systems with an axis of symmetry, the relation takes the form T/A=–/E, whereT is the period,A is the angular momentum, is the angle through which the system has rotated after one period, andE is the energy.  相似文献   
117.
Roy  J. -René 《Solar physics》1977,52(1):53-61
The north-south incidence has been studied of 31 white-light flares observed since 1859 and of 1669 events meeting the criteria for major flares of Dodson and Hedeman (1971) for the period 1955–1974. The asymmetry in favor of the northern hemisphere increases strikingly with the importance of the events. Similarly, magnetically complex sunspot groups (Mt. Wilson classes, and) display a more pronounced asymmetry in favor of the north than non-complex groups for 1962–1970. Contrary to the flare asymmetry, the spottedness asymmetry is independent of the size of sunspots.  相似文献   
118.
The impulsive phases of three flares that occurred on April 10, May 21, and November 5, 1980 are discussed. Observations were obtained with the Hard X-ray Imaging Spectrometer (HXIS) and other instruments aboard SMM, and have been supplemented with Hα data and magnetograms. The flares show hard X-ray brightenings (16–30 keV) at widely separated locations that spatially coincide with bright Hα patches. The bulk of the soft X-ray emission (3.5–5.5 keV) originates from in between the hard X-ray brightenings. The latter are located at different sides of the neutral line and start to brighten simultaneously to within the time resolution of HXIS. Concluded is that:
  1. The bright hard X-ray patches coincide with the footpoints of loops.
  2. The hard X-ray emission from the footpoints is most likely thick target emission from fast electrons moving downward into the dense chromosphere.
  3. The density of the loops along which the beam electrons propagate to the footpoints is restricted to a narrow range (109 < n < 2 × 1010 cm-3), determined by the instability threshold of the return current and the condition that the mean free path of the fast electrons should be larger than the length of the loop.
  4. For the November 5 flare it seems likely that the acceleration source is located at the merging point of two loops near one of the footpoints.
It is found that the total flare energy is always larger than the total energy residing in the beam electrons. However, it is also estimated that at the time of the peak of the impulsive hard X-ray emission a large fraction (at least 20%) of the dissipated flare power has to go into electron acceleration. The explanation of such a high acceleration efficiency remains a major theoretical problem.  相似文献   
119.
We study the spatial and temporal characteristics of the 3.5 to 30.0 keV emission in a solar flare on April 10, 1980. The data were obtained by the Hard X-ray Imaging Spectrometer aboard the Solar Maximum Mission Satellite. It is complemented in our analysis with data from other instruments on the same spacecraft, in particular that of the Hard X-ray Burst Spectrometer.Key results of our investigation are: (a) Continuous energy release is needed to substain the increase of the emission through the rising phase of the flare, before and after the impulsive phase in hard X-rays. The energy release is characterized by the production of hot (5 × 107 T 1.5 × 108 K) thermal regions within the flare loop structures. (b) The observational parameters characterizing the impulsive burst show that it is most likely associated with non-thermal processes (particle acceleration). (c) The continuous energy release is associated with strong chromospheric evaporation, as evidenced in the spectral line behavior determined from the Bent Crystal Spectrometer data. Both processes seem to stop just before flare maximum, and the subsequent evolution is most likely governed by the radiative cooling of the flare plasma.  相似文献   
120.
Observations of the lunar luminescence are reported for a dozen of specific Moon features using the line-depth method with a high resolution spectroscopic technique. The data indicate a variation of the Moon proper emission as a function of the phase angle which is interpreted as a proof of the thermoluminescent origin of this emission.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号