首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   378篇
  免费   15篇
  国内免费   4篇
测绘学   10篇
大气科学   46篇
地球物理   88篇
地质学   168篇
海洋学   39篇
天文学   35篇
综合类   6篇
自然地理   5篇
  2024年   1篇
  2023年   6篇
  2022年   10篇
  2021年   11篇
  2020年   6篇
  2019年   14篇
  2018年   21篇
  2017年   19篇
  2016年   20篇
  2015年   11篇
  2014年   24篇
  2013年   29篇
  2012年   21篇
  2011年   26篇
  2010年   21篇
  2009年   23篇
  2008年   27篇
  2007年   20篇
  2006年   16篇
  2005年   5篇
  2004年   10篇
  2003年   7篇
  2002年   7篇
  2001年   2篇
  2000年   3篇
  1999年   3篇
  1997年   5篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1983年   1篇
  1982年   1篇
  1980年   2篇
  1979年   1篇
  1975年   1篇
  1974年   1篇
  1971年   1篇
  1968年   1篇
排序方式: 共有397条查询结果,搜索用时 31 毫秒
31.
This study aims to provide knowledge on the thermo-mechanical behaviour of heat exchanger piles, through a laboratory scale model. The model pile (20 mm in external diameter) was embedded in dry sand. The behaviour of the axially loaded pile under thermal cycles was investigated. After applying the axial load on the pile head, the pile temperature was varied between 5 and 30 °C. Seven tests, corresponding to various axial loads ranging from 0 to 70 % of the pile estimated bearing capacity, were performed. The results on pile head displacement show that heating under low axial load induced heave and cooling induced settlement; the pile temperature-displacement curve was found to be reversible and compatible with the thermal expansion curve of the pile. However, at higher axial loads, irreversible settlement of the pile head was observed after a few thermal cycles. The axial load profile measured by the strain gauges evidenced that the pile head load was mainly transferred to the pile toe. Nevertheless, thermal cycles modified significantly the mobilised skin friction along the pile. The total pressure measured at various locations in the soil mass was also slightly influenced by the thermal cycles.  相似文献   
32.
The renewal imposed by the Eurocodes regarding the methodologies of safety evaluation requires a statistical analysis of the variability of ground geotechnical parameters. However, the studies published in the reviewed literature do not cover the typical materials from the northeast region of Portugal—residual soils from granite—to which a strong heterogeneity is associated. Hence, a statistical characterization of the natural variability of a granite residual soil from Porto has been made through a significant amount of experimental tests, focusing on its geomechanical properties. In order to provide a database for probabilistic analysis of problems involving this type of soils, an appropriate statistical law has been used to model its variability, which has been quantified by means of coefficients of variation and scales of fluctuation.  相似文献   
33.
Hydrogeology Journal - An extensive network of multilevel vibrating-wire piezometers (VWP) was recently created to monitor the spatial and temporal variation of pore pressure (and hydraulic head)...  相似文献   
34.
Inferences are made about the relationship that existed between the Ushnus, pyramid-shaped, terraced structures used by the Incas in the most important ceremonies of the Tawantinsuyo, and Inka Astronomy. We draw attention to Ayni, Kawsaypacha, Duality, and Tinkuy principles, multidimensional codes of conduct and wisdom that are at the root of the Andean cosmovision and on their perception of the world and the Cosmos. These principles, examined as postulates, allow to elaborate axiomatic propositions to identify the Ushnus with ancient Astronomy practices. In a complementary statement, starting from a bi-conditional proposition, we may infer through reciprocal corollaries that the Inka earliest roots to a holistic learning and educational ambient in the Tawantinsuyo was not elitist, instead it was based on a epistemological construct that differs from the corresponding Western educational ambients. An epistemological and cognitive approach allows to identify an ancient elaborate process of knowledge construction, based on the four fundamental principles, corresponding to different levels of assimilation and comprehension. As a complementary aspect, we identify some of the most preserved Ushnus of the Inka “Empire.” Then we complement this contribution with a broader interpretation for the Ushnus.  相似文献   
35.
We investigate the ability of modern general circulation models (GCMs) to simulate transport in the martian atmosphere using measurements of argon as a proxy for the transport processes. Argon provides the simplest measure of transport as it is a noble gas with no sinks or sources on seasonal timescales. Variations in argon result solely from ‘freeze distillation’, as the atmosphere condenses at the winter poles, and from atmospheric transport. Comparison of all previously published models when rescaled to a common definition of the argon enhancement factor (EF) suggest that models generally do a poor job in predicting the peak enhancement in southern winter over the winter pole – the time when the capability of the model transport approaches are most severely tested. Despite observed peak EF values of ~6, previously published model predictions peaked at EF values of only 2–3. We introduce a new GCM that provides a better treatment of mass conservation within the dynamical core, includes more sophisticated tracer transport approaches, and utilizes a cube–sphere grid structure thus avoiding the grid-point convergence problem at the pole that exists for most current Mars GCMs. We describe this model – the Ashima Research/Massachusetts Institute of Technology Mars General Circulation Model (Ashima/MIT Mars GCM) and use it to demonstrate the significant sensitivity of peak EF to the choices of transport approach for both tracers and heat. We obtain a peak EF of 4.75 which, while over 50% higher than any prior model, remains well short of the observed value. We show that the polar EF value in winter is primarily determined by the competition between two processes: (1) mean meridional import of lower-latitude air not enriched in argon and (2) the leakage of enriched argon out of the polar column by eddies in the lowest atmospheric levels. We suggest possibilities for improving GCM representation of the CO2 cycle and the general circulation that may further improve the simulation of the argon cycle. We conclude that current GCMs may be insufficient for detailed simulation of transport-sensitive problems like the water cycle and potentially also the dust cycle.  相似文献   
36.
Magnetic measurements of soils are an effective research tool in assessing soil erosion. This approach is based on detecting layers showing different magnetic properties in vertical soil profiles and lateral catenas. The objective of this research is to compile data on magnetic susceptibility (MS) of soils in Eastern Ukraine to assess the soil erosion rates. The chernozems of Tcherkascy Tishki (Kharkov Region, Ukraine) have undergone a field crop rotation without proper soil conservation technologies being applied. We conducted an intrinsic element grouping of the magnetic susceptibility values and demonstrated that they can be used as MS cartograms in soil erosion mapping. The study showed a strong correlation between the MS values and the erosion index. MS and the erosion index were found to correlate with the humus content. Magnetic mineralogical analyses suggest the presence of highly magnetic minerals (magnetite and maghemite) as well as weakly magnetic goethite, ferrihydrite, and hematite. Stable pseudosingle-domain (PSD), single-domain (SD), and superparamagnetic (SP) grains of pedogenic origin dominate in the studied chernozems. Being an effective, quick and low cost alternative, magnetic methods can be successfully used in the soil erosion investigations.  相似文献   
37.
The accurate evaluation and appropriate treatment of uncertainties is of primary importance in modern probabilistic seismic hazard assessment (PSHA). One of the objectives of the SIGMA project was to establish a framework to improve knowledge and data on two target regions characterized by low-to-moderate seismic activity. In this paper, for South-Eastern France, we present the final PSHA performed within the SIGMA project. A new earthquake catalogue for France covering instrumental and historical periods was used for the calculation of the magnitude-frequency distributions. The hazard model incorporates area sources, smoothed seismicity and a 3D faults model. A set of recently developed ground motion prediction equations (GMPEs) from global and regional data, evaluated as adequately representing the ground motion characteristics in the region, was used to calculate the hazard. The magnitude-frequency distributions, maximum magnitude, faults slip rate and style-of-faulting are considered as additional source of epistemic uncertainties. The hazard results for generic rock condition (Vs30 = 800 m/s) are displayed for 20 sites in terms of uniform hazard spectra at two return periods (475 years and 10,000 years). The contributions of the epistemic uncertainties in the ground motion characterizations and in the seismic source characterization to the total hazard uncertainties are analyzed. Finally, we compare the results with existing models developed at national scale in the framework of the first generation of models supporting the Eurocode 8 enforcement, (MEDD 2002 and AFPS06) and at the European scale (within the SHARE project), highlighting significant discrepancies at short return periods.  相似文献   
38.
Cheng  Wei  Chen  Ren-peng  Hong  Peng-yun  Cui  Yu-jun  Pereira  Jean-Michel 《Acta Geotechnica》2020,15(10):2741-2755

In thermal-related engineering such as thermal energy structures and nuclear waste disposal, it is essential to well understand volume change and excess pore water pressure buildup of soils under thermal cycles. However, most existing thermo-mechanical models can merely simulate one heating–cooling cycle and fail in capturing accumulation phenomenon due to multiple thermal cycles. In this study, a two-surface elasto-plastic model considering thermal cyclic behavior is proposed. This model is based on the bounding surface plasticity and progressive plasticity by introducing two yield surfaces and two loading yield limits. A dependency law is proposed by linking two loading yield limits with a thermal accumulation parameter nc, allowing the thermal cyclic behavior to be taken into account. Parameter nc controls the evolution rate of the inner loading yield limit approaching the loading yield limit following a thermal loading path. By extending the thermo-hydro-mechanical equations into the elastic–plastic state, the excess pore water pressure buildup of soil due to thermal cycles is also accounted. Then, thermal cycle tests on four fine-grained soils (natural Boom clay, Geneva clay, Bonny silt, and reconstituted Pontida clay) under different OCRs and stresses are simulated and compared. The results show that the proposed model can well describe both strain accumulation phenomenon and excess pore water pressure buildup of fine-grained soils under the effect of thermal cycles.

  相似文献   
39.
Ocean Dynamics - Identifying zones of stagnation and deposition of terrigenous matter or contaminants induced by human activity is a key issue in coastal areas. In this paper, circulation processes...  相似文献   
40.

Numerical simulations of groundwater flow and heat transport are used to provide insight into the interaction between shallow groundwater flow and thermal dynamics related to permafrost thaw and thaw settlement at the Iqaluit Airport taxiway, Nunavut, Canada. A conceptual model is first developed for the site and a corresponding two-dimensional numerical model is calibrated to the observed ground temperatures. Future climate-warming impacts on the thermal regime and flow system are then simulated based on climate scenarios proposed by the Intergovernmental Panel on Climate Change (IPCC). Under climate warming, surface snow cover is identified as the leading factor affecting permafrost degradation, including its role in increasing the sensitivity of permafrost degradation to changes in various hydrogeological factors. In this case, advective heat transport plays a relatively minor, but non-negligible, role compared to conductive heat transport, due to the significant extent of low-permeability soil close to surface. Conductive heat transport, which is strongly affected by the surface snow layer, controls the release of unfrozen water and the depth of the active layer as well as the magnitude of thaw settlement and frost heave. Under the warmest climate-warming scenario with an average annual temperature increase of 3.23 °C for the period of 2011–2100, the simulations suggest that the maximum depth of the active layer will increase from 2 m in 2012 to 8.8 m in 2100 and, over the same time period, thaw settlement along the airport taxiway will increase from 0.11 m to at least 0.17 m.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号