首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   664篇
  免费   11篇
  国内免费   6篇
测绘学   12篇
大气科学   113篇
地球物理   119篇
地质学   260篇
海洋学   29篇
天文学   125篇
综合类   3篇
自然地理   20篇
  2022年   5篇
  2021年   5篇
  2020年   10篇
  2019年   11篇
  2018年   9篇
  2017年   9篇
  2016年   17篇
  2015年   15篇
  2014年   11篇
  2013年   24篇
  2012年   22篇
  2011年   21篇
  2010年   38篇
  2009年   31篇
  2008年   43篇
  2007年   37篇
  2006年   27篇
  2005年   28篇
  2004年   25篇
  2003年   26篇
  2002年   17篇
  2001年   15篇
  2000年   23篇
  1999年   12篇
  1998年   13篇
  1997年   6篇
  1996年   9篇
  1995年   11篇
  1994年   13篇
  1993年   7篇
  1992年   5篇
  1991年   6篇
  1990年   4篇
  1989年   5篇
  1988年   4篇
  1987年   6篇
  1986年   5篇
  1985年   6篇
  1984年   8篇
  1983年   11篇
  1982年   5篇
  1980年   7篇
  1979年   4篇
  1978年   7篇
  1977年   7篇
  1976年   6篇
  1975年   8篇
  1974年   5篇
  1972年   5篇
  1971年   3篇
排序方式: 共有681条查询结果,搜索用时 647 毫秒
261.
A 29Si and 27Al magic angle spinning nuclear magnetic resonance study is reported for differently synthesized mullites. The 29Si MAS NMR spectra of all samples are essentially identical. They consist of a main resonance at -86.8 ppm, a shoulder around -90 ppm and a second resonance at -94.2 ppm. The main resonance is interpreted as being due to a sillimanite-type geometry around Si and the second one is tentatively assigned to a Si environment typical for mullite. The 27Al MAS NMR spectra of sinter- and fused-mullite measured at different Larmor frequencies revealed clearly the presence of three distinct Al sites in mullite, i.e. of octahedral (M1), tetrahedral (M2) and distorted tetrahedral (Al*) sites.  相似文献   
262.
The Skouries porphyry Cu-Au deposit, containing an indicated reserve of 206 Mt at 0.54% Cu and 0.80 g/t Au, is hosted by at least four hypabyssal monzonite-porphyry phases. In decreasing age, they are: (1) pink monzonite, (2) main monzonite, (3) intra-mineral monzonite, and (4) late-stage porphyry. High-grade ore is directly associated with the main and intra-mineral monzonite phases. All intrusive phases are cut by late-stage monzonite dykes that are barren. The monzonites have porphyritic textures with phenocrysts of plagioclase, alkali feldspar and amphibole as well as apatite and titanite microphenocrysts in a fine-grained feldspar-dominated groundmass. Mineralized samples are affected to varying degrees by potassic alteration, ranging from weak biotite-magnetite disseminations, through cross-cutting veinlets of hydrothermal orthoclase, to zones with pervasive orthoclase flooding. The high halogen contents of the Skouries intrusions are reflected in the high Cl and F concentrations of mica phases (up to 0.19 and 2.48 wt% respectively). The presence of magmatic magnetite in all intrusive phases implies high oxygen fugacities of the parental melts. All four monzonite phases have relatively evolved compositions, as reflected by their high SiO2, low MgO and low mg#, and variable but low contents of mantle-compatible elements such as V, Ni and Co. However, their mg# suggests increasing degrees of fractionation of the parental melts with decreasing age. Their high K2O (up to 5.8 wt%) and K2O/Na2O ratios (>1), as well as their high Ce/Yb and Th/Yb ratios (>34 and >21 respectively), which are believed to have been unaffected by alteration processes, are typical of alkaline rocks of the shoshonite association. Importantly, the Skouries intrusions are characterized by very high U and Th contents (up to 18.9 ppm and 62 ppm, respectively) that are consistent with accessory thorite and rare allanite in several samples. The high initial 87Sr/86Sr ratios (0.7082) for the Skouries intrusions suggest crustal contamination during emplacement. The use of geochemical discrimination diagrams assigns the rocks to a continental arc setting in accord with the interpretation of previous workers.  相似文献   
263.
An algorithm for determining if any given point,P, on the surface of a sphere is located inside, outside, or along the border of an arbitrary spherical polygon,S, is described. The polygon is described by specifying coordinates of its vertices, and coordinates of some pointX which is known to lie withinS. The algorithm is based on the principle that an arc joiningX andP will cross the border ofS an odd number of times ifP lies outsideS, and an even number of times ifP lies withinS. The algorithm has been implemented as a set of FORTRAN subroutines, and a listing is provided. The algorithm and subroutine package can be used with spherical polygons containing holes, or with composited spherical polygons.  相似文献   
264.
265.
A computer model based on Monte Carlo techniques was developed to simulate the destruction of lunar rocks by catastrophic rupture due to meteoroid impact. Energies necessary to accomplish catastrophic rupture were derived from laboratory experiments. A crater-production rate derived from lunar rocks was utilized to calculate absolute time scales.Calculated median survival times for crystalline lunar rocks are 1.9, 4.6, 10.3, and 22 m.y. for rock masses of 10, 102, 103, and 104 g respectively. Corresponding times of 6, 14.5, 32, and 68 × 106 yr are required, before the probability of destruction reaches 0.99. These results are consistent with absolute exposure ages measured on returned rocks.Some results also substantiate previous conclusions reached by others: the catastrophic rupture process is significantly more effective in obliterating lunar rocks compared to mass wasting by single particle abrasion. The view is also corroborated that most rocks presently on the lunar surface are either exhumed from the regolith or fragments of much larger boulders, rather than primary ejecta excavated from pristine bedrock.Permanent address: Max-Planck-Institut für Kernphysik, 6900 Heidelberg, F.R.G.  相似文献   
266.
We find that faint sodium emission originating in the middle Jupiter magnetosphere has two distinct kinematical components. The “normal” signature of atoms on bound orbits with large apojoves seems always to be present, and we suggest these atoms are an extension of the bright, near-Io sodium cloud. The “fast” signature, with speeds up to at least 100 km sec?1, is seen only occasionally, and we suggest it is due to an interaction of the near-Io sodium cloud with the corotating, heavy-ion plasma. Both elastic and charge-exchange collisions seem consistent with the observed kinematical and temporal signatures. Elastic collisions seem marginally more capable of producing the high observed sodium atom speeds. We predict observable occurences of the fast component in the hours following passage of the Io sodium cloud through the plasma centrifugal symmetry surface if Io is at a favorable orbital longitude. Between 10 and 20 RJ we find an atomic sodium density ~10?2 cm?3. If the photoionization lifetime applies, an Io source of at least 1026 sodium atoms sec? is required to maintain this remote sodium population.  相似文献   
267.
An innovative way to take the large-scale circulation influence into account in coastal primitive-equation models is explored by an inverse modelling approach. Restricted to barotropic external forcing, this work is a first step in the development of a four-dimensional variational (4DVAR) data-assimilation approach to estimate the best initial and open-boundary conditions that force a coastal model according to interior observations. This development is founded on the OPA modelling system which representation of barotropic coastal dynamics is restricted to motions of long time scales ( a day) due to its rigid lid approximation. Twin experiments are performed in an academic configuration of the Gulf of Lions (located in the northwestern Mediterranean Sea) to study the sensitivity of a remote barotropic forcing to different observational networks measuring surface currents deployed in this area. Three monitoring designs are tested for a large-scale barotropic perturbation in the hindcast mode. It is shown that the space and time distribution of observations acts on the efficiency of the 4DVAR method and then allows coarser datasets.Responsible Editor: Phil Dyke  相似文献   
268.
269.
270.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号