首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   387篇
  免费   10篇
  国内免费   2篇
测绘学   3篇
大气科学   23篇
地球物理   99篇
地质学   150篇
海洋学   36篇
天文学   56篇
综合类   2篇
自然地理   30篇
  2021年   5篇
  2020年   8篇
  2019年   9篇
  2018年   7篇
  2017年   12篇
  2016年   8篇
  2015年   6篇
  2014年   16篇
  2013年   29篇
  2012年   12篇
  2011年   21篇
  2010年   18篇
  2009年   22篇
  2008年   13篇
  2007年   10篇
  2006年   18篇
  2005年   21篇
  2004年   24篇
  2003年   13篇
  2002年   17篇
  2001年   4篇
  2000年   3篇
  1999年   10篇
  1998年   9篇
  1997年   10篇
  1996年   6篇
  1995年   3篇
  1994年   4篇
  1993年   3篇
  1992年   4篇
  1991年   3篇
  1990年   6篇
  1989年   4篇
  1988年   3篇
  1987年   6篇
  1986年   3篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1981年   5篇
  1980年   3篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1972年   2篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
排序方式: 共有399条查询结果,搜索用时 15 毫秒
151.
When investigating heterogeneous media such as composite materials or geological structures, it is convenient to replace them by macroscopic equivalent media, which simplifies computations a lot. In the paper, we look for the equivalent macroscopic model for describing seismic wave propagation and transient heat transfers in thermoelastic periodic geological structures made of rock or soil. We follow the route described in Auriault (2012), to investigating thermoelastic composite media. We use the method of multi-scale asymptotic expansions. By estimating the dimensionless numbers in the momentum and energy balances, we show that an equivalent macroscopic model exists for describing seismic waves at very low frequencies only. The model then shows a damping which is due to thermal resonance at the heterogeneity scale. At higher frequencies, such an equivalent macroscopic model does not exist. Macroscopic models for describing transient heat transfers do not exist.  相似文献   
152.
:Reactivation of metasomatized mantle lithosphere may occur during continental extension,which is an important component of plate tectonics.The lower most part of the metasomatized domains in the subcontinental mantle lithosphere can be locally enriched in CO2.Therefore,partial melting of these metasomatized domains may play a crucial role in the global carbon cycle.However,little is known about this process and up until now few numerical constraints are available.Here we address this knowledge gap and use a 2-D high resolution petrological-thermomechanical model to assess lithospheric rifting.CO2 degassing and melting.We test 4 lithospheric thicknesses:90,110,130 and 200 km with a 10 km thick metasomatized layer at the base using CO2 of 2 wt.%in the bulk composition.The carbonate enriched layer is stable below^3 GPa(>110 km)for a temperature of 1300℃;therefore,we only observe degassing patterns for lithospheric models that are 130 km and 200 km thick.The metasomatized layer for the 130 km thick lithosphere mostly comprises carbonatite melting,whereas in the 200 km thick scenario propagation of melt development from kimberlites to carbonatites occurs as the metasomatic mantle is exhumed during extension.The numerical models fit well into natural rifting zones of the European Cenozoic Rift System for young(shallow)and of the North Atlantic Rift for old(thick)lithosphere.  相似文献   
153.
Anorogenic granite xenoliths occur in alkali basalts coeval with the Pliocene–Pleistocene continental rifting of the Pannonian Basin. Observed granite varieties include peraluminous, calcic to peralkalic, magnesian to ferroan types. Quartz and feldspars are dominant rock-forming minerals, accompanied by minor early ilmenite and late magnetite–ulvöspinel. Zircon and Nb–U–REE minerals (oxycalciopyrochlore, fergusonite, columbite) are locally abundant accessory phases in calc-alkalic types. Absence of OH-bearing Fe, Mg-silicates and presence of single homogeneous feldspars (plagioclase in calcic types, anorthoclase in calc-alkalic types, ferrian Na-sanidine to anorthoclase in alkalic types) indicate water-deficient, hypersolvus crystallization conditions. Variable volumes of interstitial glass, absence of exsolutions, and lacking deuteric hydrothermal alteration and/or metamorphic/metasomatic overprint are diagnostic of rapid quenching from hypersolidus temperatures. U–Pb zircon ages determined in calcic and calc-alkalic granite xenoliths correspond to a time interval between 5.7 and 5.2 Ma. Positive εHf values (14.2 ± 3.9) in zircons from a 5.2-Ma-old calc-alkalic granite xenolith indicate mantle-derived magmas largely unaffected by the assimilation of crustal material. This is in accordance with abundances of diagnostic trace elements (Rb, Y, Nb, Ta), indicating A1-type, OIB-like source magmas. Increased accumulations of Nb–U–REE minerals in these granites indicate higher degree of the magmatic differentiation reflected in Rb-enrichment, contrasting with Ba-enrichment in barren xenoliths. Incipient charnockitization, i.e. orthopyroxene and ilmenite crystallization from interstitial silicate melt, was observed in many granite xenoliths. Thermodynamic modeling using pseudosections showed that the orthopyroxene growth may have been triggered by water exsolution from the melt during ascent of xenoliths in basaltic magma. Euhedral-to-skeletal orthopyroxene growth probably reflects contrasting ascent rates of basaltic magma with xenoliths, intermitted by the stagnation in various crustal levels at a <3 kbar pressure. The Tertiary suite of intra-plate, mantle-derived A1-type granites and syenites is geochemically distinct from pre-Tertiary, post-orogenic A2-type granites of the Carpatho–Pannonian region, which exhibit geochemical features diagnostic of crustal melting along continental margins.  相似文献   
154.
Bivalve population health: Multistress to identify hot spots   总被引:3,自引:0,他引:3  
This study investigated some stress (metals, parasites) and response (immunity, metallothionein) factors in two cockle and two Manila clam populations. Data from eight seasons were averaged to obtain global baseline values. Stress/response characteristics of each population were compared to population health status that was determined through population dynamics parameters. Four different scenarios were discussed: (1) a lightly stressed cockle population with correct population health but with a risk of deterioration (hot spot); (2) a lightly stressed introduced cockle population threatened of extinction. In this case ecological factors were suspected; (3) a moderately stressed clam population with moderate adaptative response. The population was sustainable but the level of stress should not increase (hotspot); and (4) a stressed clam population and unfavourable ecological conditions preventing clam settlement. This monitoring highlighted that the discrepancy between population health and stress levels could be due to insufficient response by bivalves and/or by unfavourable ecological factors.  相似文献   
155.
Pressure-induced temperature (PIT) variations are systematically observed in the atmosphere of underground cavities. Such PIT variations are due to the compressibility of the air, damped by heat exchange with the rock surface. It is important to characterize such processes for numerous applications, such as the preservation of painted caves or the assessment of the long-term stability of underground laboratories and underground waste repositories. In this paper we thoroughly study the spatiotemporal dependence of the PIT response versus frequency using vertical and horizontal profiles of temperature installed in an abandoned underground quarry located in Vincennes, near Paris. The PIT response varies from about 20 × 10?3°C hPa?1 at a frequency of 2 × 10?4 Hz to 2–3 × 10?3°C hPa?1 at a frequency of one cycle per day. An analytical expression based on a simple heat exchange model accounts for the observed features of the PIT response and allows for correcting the measured time series, having standard deviations of about 10?2°C, to residual variations with a standard deviation of about 2 × 10?3°C. However, a frequency-dependent attenuation of the response, corresponding to a reduction in amplitude with a factor varying from 2 to 3, is observed near the walls. This effect is not included in the simple analytical expression, but it can be accounted for by a one-dimensional differential equation, solved numerically, where temperature variations in the atmosphere are damped by an effective radiative coupling with the rock surface, complemented by a diffusive coupling near the walls. The TIP response is observed to remain stable over several years, but a large transient enhancement of about a factor of two is observed near the roof at one location from July to October 2005. In a cavity located below the Paris Observatory, an additional contribution is identified in the PIT response function versus frequency for frequencies smaller than 2 × 10?5 Hz. This contribution can be described using a modified analytical expression that includes the effect of heat diffusion into the surrounding rock. Using this expression, in this case also, the temperature time series can then be corrected, giving a residual standard deviation smaller than 1.6 × 10?3°C. Transient temporal variations of the PIT response are observed in all sites, with possible nonlinear components in the PIT. Such effects are not properly understood at this stage, and limit the reduction of time series to standard deviations of the order of 2 × 10?3°C, and consequently limit the search for new transient or seasonal temperature signals, for example due to the presence of tiny heat sources in the cavity or to geodynamical effects.  相似文献   
156.
Sedimentological, geochemical and particle-size analyses were used to reconstruct the evolution of both trophic state and hypolimnetic anoxia in Lake Bourget (French Alps) during the last century. Radionuclide dating (210Pb, 137Cs and 241Am) confirmed the annual rhythm of laminations in the upper sediment profile. In Lake Bourget, biochemical varves are triplets composed of a diatom layer (spring lamina), a bio-precipitated calcite-rich layer (spring/summer lamina), and a layer rich in organic matter and detrital particles (winter lamina). The onset of eutrophication and the first appearance of an anoxic facies occurred simultaneously and were dated by laminae counting to AD 1943±1 year. Persistent anoxic conditions began in AD 1960. Eutrophication is characterised by drastic increases in the flux of biogenic silica (mostly diatoms), lacustrine organic matter, and larger calcite crystals (15–30 μm). The increase of organic matter also represents a marker of the onset of anoxic conditions in the hypolimnion. Our results show that eutrophication was the main factor controlling anoxia in the hypolimnion. This eutrophication was caused mostly by the inflow of untreated sewage effluents, and to a lesser extent, by input of fertilizer-derived phosphorus during floods of the Rhone River and run-off from the lake catchment. The Rhone River, however, can also be a source of re-oxygenation via underflows that originate during flood events. Oxygenation of the hypolimnion is also controlled by low winter temperatures, which enable turnover of the lake. Thus, global warming, associated with a forecasted reduction in precipitation, might reduce the efficiency of hypolimnetic re-oxygenation in Lake Bourget.  相似文献   
157.
Centrifuge modelling of raked piles   总被引:1,自引:1,他引:0  
Inclined piles are prohibited by many codes in seismic areas. Nevertheless the battered effect has not yet been clarified because very few data are available. The present work is a comparison, at reduced scale in the centrifuge, of the response of two simplified pile groups: a 1 × 2 vertical piles and 1 × 2 pile group with one inclined pile. Two configurations are considered: end-bearing and floating pile group, both with pile heads rigidly fixed with a massive cap. First, repeatability tests under horizontal cyclic loading were performed on both floating pile groups. Secondly, repeated horizontal impact tests were performed on both end-bearing pile groups. These impact tests, which highlight the influence of inclined piles on the inertial response of a group, are a first step for the more complex analysis of the performance of such groups under seismic loads where inertial and kinematic interactions are combined. The first part of this work revealed the influence of sand structure around the inclined pile tip on the repeatability of the tests performed on floating pile groups. The second part highlighted differences in the dynamic response between the two end-bearing pile groups through measurements of the pile cap acceleration, the bending moment profile and the axial load in the piles.  相似文献   
158.
159.
This study diagnoses the climate sensitivity, radiative forcing and climate feedback estimates from eleven general circulation models participating in the Fifth Phase of the Coupled Model Intercomparison Project (CMIP5), and analyzes inter-model differences. This is done by taking into account the fact that the climate response to increased carbon dioxide (CO2) is not necessarily only mediated by surface temperature changes, but can also result from fast land warming and tropospheric adjustments to the CO2 radiative forcing. By considering tropospheric adjustments to CO2 as part of the forcing rather than as feedbacks, and by using the radiative kernels approach, we decompose climate sensitivity estimates in terms of feedbacks and adjustments associated with water vapor, temperature lapse rate, surface albedo and clouds. Cloud adjustment to CO2 is, with one exception, generally positive, and is associated with a reduced strength of the cloud feedback; the multi-model mean cloud feedback is about 33 % weaker. Non-cloud adjustments associated with temperature, water vapor and albedo seem, however, to be better understood as responses to land surface warming. Separating out the tropospheric adjustments does not significantly affect the spread in climate sensitivity estimates, which primarily results from differing climate feedbacks. About 70 % of the spread stems from the cloud feedback, which remains the major source of inter-model spread in climate sensitivity, with a large contribution from the tropics. Differences in tropical cloud feedbacks between low-sensitivity and high-sensitivity models occur over a large range of dynamical regimes, but primarily arise from the regimes associated with a predominance of shallow cumulus and stratocumulus clouds. The combined water vapor plus lapse rate feedback also contributes to the spread of climate sensitivity estimates, with inter-model differences arising primarily from the relative humidity responses throughout the troposphere. Finally, this study points to a substantial role of nonlinearities in the calculation of adjustments and feedbacks for the interpretation of inter-model spread in climate sensitivity estimates. We show that in climate model simulations with large forcing (e.g., 4 × CO2), nonlinearities cannot be assumed minor nor neglected. Having said that, most results presented here are consistent with a number of previous feedback studies, despite the very different nature of the methodologies and all the uncertainties associated with them.  相似文献   
160.
Based on a decade of research on cloud processes, a new version of the LMDZ atmospheric general circulation model has been developed that corresponds to a complete recasting of the parameterization of turbulence, convection and clouds. This LMDZ5B version includes a mass-flux representation of the thermal plumes or rolls of the convective boundary layer, coupled to a bi-Gaussian statistical cloud scheme, as well as a parameterization of the cold pools generated below cumulonimbus by re-evaporation of convective precipitation. The triggering and closure of deep convection are now controlled by lifting processes in the sub-cloud layer. An available lifting energy and lifting power are provided both by the thermal plumes and by the spread of cold pools. The individual parameterizations were carefully validated against the results of explicit high resolution simulations. Here we present the work done to go from those new concepts and developments to a full 3D atmospheric model, used in particular for climate change projections with the IPSL-CM5B coupled model. Based on a series of sensitivity experiments, we document the differences with the previous LMDZ5A version distinguishing the role of parameterization changes from that of model tuning. Improvements found previously in single-column simulations of case studies are confirmed in the 3D model: (1) the convective boundary layer and cumulus clouds are better represented and (2) the diurnal cycle of convective rainfall over continents is delayed by several hours, solving a longstanding problem in climate modeling. The variability of tropical rainfall is also larger in LMDZ5B at intraseasonal time-scales. Significant biases of the LMDZ5A model however remain, or are even sometimes amplified. The paper emphasizes the importance of parameterization improvements and model tuning in the frame of climate change studies as well as the new paradigm that represents the improvement of 3D climate models under the control of single-column case studies simulations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号