首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   4篇
测绘学   2篇
大气科学   9篇
地球物理   25篇
地质学   8篇
海洋学   4篇
天文学   6篇
自然地理   4篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   6篇
  2010年   4篇
  2009年   3篇
  2007年   4篇
  2006年   5篇
  2005年   2篇
  2004年   3篇
  2003年   3篇
  2002年   1篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1989年   1篇
  1987年   1篇
  1983年   1篇
  1980年   1篇
  1977年   1篇
排序方式: 共有58条查询结果,搜索用时 343 毫秒
31.
A review is presented of the effects influencing the ionosphere which are caused by acoustic emission from different sources (chemical and nuclear explosions, bolides, meteorites, earthquakes, volcanic eruptions, hurricanes, launches of spacecrafts and flights of supersonic jets). A terse statement is given of the basic theoretical principles and simplified theoretical models underlying the physics of propagation of infrasonic pulses and gravity waves in the upper atmosphere. The observations of “quick” response by the ionosphere are pointed out. The problem of magnetic disturbances and magnetohydrodynamic (MHD) wave generation in the ionosphere is investigated. In particular, the supersonic propagation of ionospheric disturbances, and the conversion of the acoustic energy into the so-called gyrotropic waves in the ionospheric E-layer are considered.  相似文献   
32.
33.
The knowledge of solar extreme and far ultraviolet (EUV) irradiance variations is essential for the characterization of the Earth’s upper atmosphere. For a long time, this knowledge has been based on empirical models, which are themselves based on proxies of the solar activity. However, the accurate modeling and prediction of the Earth’s upper atmosphere necessitate to improve the precision on the irradiance and its variations below about 200 nm. Here, we present a review of recent works made by the authors that aim at quantifying the irradiance variability at these wavelengths, and that lead to new way of monitoring the solar EUV/FUV irradiance spectrum. In more details, it is shown that the quantification of the high level of redundancy in the solar spectrum variability allows to envisage measuring only a small portion of the spectrum without losing essential knowledge. Finally, we discuss what should and could be measured in order to retrieve the solar extreme and far ultraviolet spectrum.  相似文献   
34.
35.
36.
37.
Bubble growth experiments were performed in a piston-cylinder by hydrating albite melt with ∼11 wt.% H2O at 550 MPa followed by rapid decompression at 1 MPa s−1 to pressures of 450 or 400 MPa. At these conditions the melt was supersaturated with ∼0.5 or ∼1.5 wt.% H2O, respectively, which caused rapid exsolution and bubble growth. Results at 1200 °C demonstrate that portions of the initial cumulative bubble-area distributions may be characterized by a power law with an exponent near 1, but they rapidly evolve to exponential distributions and approach a unimodal distribution after 32 h of growth. This evolution occurs by the growth of larger bubbles at the expense of smaller ones. The growth rate of the average bubble radius in these experiments is described by a power law whose exponent is 0.35, close to the theoretical exponent of 1/3 for phase growth in which coalescence is dominated by Ostwald ripening of the bubbles. Over the range of pressures and water contents investigated at 1200 °C, the bubble-size distributions and growth rate are not significantly affected by changes in the amount of exsolved water or by splitting the decompression path into two steps. Similar decompression experiments at 800 °C are dominated by smaller bubbles than in the 1200 °C experiments and also demonstrate exponential cumulative size distributions, but consistently contain a small fraction of larger bubbles. The growth rate of these bubble radii cannot be fit with a power law, but a logarithmic dependence of the bubble radii on time is possible, suggesting a difference in the growth mechanisms at low and high temperatures. This difference is attributed to the orders of magnitude changes in melt viscosity and water diffusion in the melt as the temperature varies from 800 to 1200 °C. At 1200 °C the transport properties of albite melt resemble those of natural basaltic melts whereas at 800 °C the properties are similar to those of andesitic to dacitic melts. The decompression rate used in this study exceeds natural rates by one to two orders of magnitude. Thus, these results indicate that natural mafic-to-intermediate magmas supersaturated with only a small excess of water should easily nucleate bubbles during ascent and that bubble growth in mafic magmas will proceed much more rapidly than in andesitic to dacitic magmas. Intermediate composition magmas also may be capable of forming bimodal bubble-size distributions even in the case when only one nucleation event occurred. The rapid evolution of the bubble-size distribution from a power law to an exponential may be useful in constraining the time duration between bubble nucleation and the quenching of natural samples.  相似文献   
38.
Natural attenuation of arsenic by simple adsorption on oxyhydroxides may be limited due to competing oxyanions, but uptake by coprecipitation may locally sequester arsenic. We have systematically investigated the mechanism and mode (adsorption versus coprecipitation) of arsenic uptake in the presence of carbonate and phosphate, from solutions of inorganic composition similar to many groundwaters. Efficient arsenic removal, >95% As(V) and ∼55% in initial As(III) systems, occurred over 24 h at pHs 5.5-6.5 when Fe(II) and hydroxylapatite (Ca5(PO4)3OH, HAP) “seed” crystals were added to solutions that had been previously reacted with HAP, atmospheric CO2(g) and O2(g). Arsenic adsorption was insignificant (<10%) on HAP without Fe(II). Greater uptake in the As(III) system in the presence of Fe(II) was interpreted as due to faster As(III) to As(V) oxidation by molecular oxygen in a putative pathway involving Fe(IV) and As(IV) intermediate species. HAP acts as a pH buffer that allows faster Fe(II) oxidation. Solution analyses coupled with high-resolution transmission electron microscopy (HRTEM), X-ray Energy-Dispersive Spectroscopy (EDS), and X-Ray Absorption Spectroscopy (XAS) indicated the precipitation of sub-spherical particles of an amorphous, chemically-mixed, nanophase, FeIII[(OH)3(PO4)(AsVO4)]·nH2O or FeIII[(OH)3( PO4)(AsVO4)(AsIIIO3)minornH2O, where AsIIIO3 is a minor component.The mode of As uptake was further investigated in binary coprecipitation (Fe(II) + As(III) or P), and ternary coprecipitation and adsorption experiments (Fe(II) + As(III) + P) at variable As/Fe, P/Fe and As/P/Fe ratios. Foil-like, poorly crystalline, nanoparticles of FeIII(OH)3 and sub-spherical, amorphous, chemically-mixed, metastable nanoparticles of FeIII[(OH)3, PO4nH2O coexisted at lower P/Fe ratios than predicted by bulk solubilities of strengite (FePO4·2H2O) and goethite (FeOOH). Uptake of As and P in these systems decreased as binary coprecipitation > ternary coprecipitation > ternary adsorption.Significantly, the chemically-mixed, ferric oxyhydroxide-phosphate-arsenate nanophases found here are very similar to those found in the natural environment at slightly acidic to circum-neutral pHs in sub-oxic to oxic systems, such phases may naturally attenuate As mobility in the environment, but it is important to recognize that our system and the natural environment are kinetically evolving, and the ultimate environmental fate of As will depend on the long-term stability and potential phase transformations of these mixed nanophases. Our results also underscore the importance of using sufficiently complex, yet systematically designed, model systems to accurately represent the natural environment.  相似文献   
39.
In order to investigate the microclimatic conditions in a street canyon, a physical model was used to conduct the Joint ATREUS-PICADA Experiment (JAPEX) in situ experimental campaign. Four lines of buildings simulated by steel containers were installed to form three parallel street canyons at 1:5 scale, with width/height aspect ratio approximately 0.40. The reference wind and atmospheric conditions were measured, as well as the flow velocity and direction in the street. Preliminary results concern street canyon ventilation and thermal effects on in-canyon airflow, and show that vortical motions appear for reference wind directions perpendicular to the street axis. The presence of adjacent rows of buildings did not appear to significantly influence the flow character within the canyon for the case of a low aspect ratio corresponding to a skimming flow regime. The flow structure was not significantly affected by the thermal effects although some slight interference occurred in the lower part of the canyon. An analysis of horizontal temperature gradients indicated that a thin boundary layer develops near the heated facade. These facts imply that the thermal effects are considerable only very close to the wall.  相似文献   
40.
F. Li  M. Parrot 《Journal of Geodesy》2006,80(8-11):487-495
For about 40 years, ionospheric variations [including total electron content (TEC)] have been observed from time to time during large earthquakes. The TEC is the integrated electron density between a ground beacon and a satellite. It is a by-product of the International DORIS Service (IDS), which is also used for precise orbit determination of altimetric satellites. This paper reports the study of TEC variations observed by the DORIS station Cibinong, Indonesia (CICB, latitude: 6.48°S; longitude: 106.85°E) at the time of the Sumatra–Andaman earthquake (magnitude 9.2), which occurred on December 26, 2004. Numerous and intense aftershocks followed for several months after the main shock. An analysis was done to compare the variation of the TEC intensity observed by several satellites with the occurrence of these earthquakes. For comparison, the same study was also performed for another earthquake occurred very close to CICB but at a very different time. The main result is that the DORIS data show a TEC perturbation during night time close to the epicenter prior to the main Sumatra–Andaman earthquake event.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号