首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1486篇
  免费   72篇
  国内免费   3篇
测绘学   21篇
大气科学   95篇
地球物理   362篇
地质学   718篇
海洋学   119篇
天文学   176篇
综合类   5篇
自然地理   65篇
  2024年   3篇
  2023年   5篇
  2022年   18篇
  2021年   25篇
  2020年   23篇
  2019年   37篇
  2018年   54篇
  2017年   60篇
  2016年   60篇
  2015年   55篇
  2014年   73篇
  2013年   113篇
  2012年   54篇
  2011年   115篇
  2010年   95篇
  2009年   104篇
  2008年   87篇
  2007年   55篇
  2006年   62篇
  2005年   54篇
  2004年   49篇
  2003年   42篇
  2002年   39篇
  2001年   23篇
  2000年   22篇
  1999年   17篇
  1998年   12篇
  1997年   16篇
  1996年   13篇
  1995年   9篇
  1994年   20篇
  1993年   10篇
  1992年   14篇
  1991年   15篇
  1990年   6篇
  1989年   14篇
  1988年   6篇
  1987年   8篇
  1986年   7篇
  1985年   4篇
  1984年   4篇
  1983年   9篇
  1982年   5篇
  1981年   4篇
  1980年   6篇
  1979年   6篇
  1977年   5篇
  1975年   6篇
  1974年   3篇
  1973年   4篇
排序方式: 共有1561条查询结果,搜索用时 15 毫秒
51.
52.
This study assesses whether MODIS Vegetation Continuous Fields percent tree cover (PTC) data can detect deforestation and forest degradation. To assess the usefulness of PTC for detecting deforestation, we used a data set consisting of eight forest and seven non-forest categories. To evaluate forest degradation, we used data from two temperate forest types in three conservation states: primary (dense), secondary (moderately degraded) and open (heavily degraded) forest. Our results show that PTC can differentiate temperate forest from non-forest categories (p = 0.05) and thus suggests PTC can adequately detect deforestation in temperate forests. In contrast, single-date PTC data does not appear to be adequate to detect forest degradation in temperate forests. As for tropical forest, PTC can partially discriminate between forest and non-forest categories.  相似文献   
53.
54.
Leaf mechanical traits are important to understand how aquatic plants fracture and deform when subjected to abiotic (currents or waves) or biotic (herbivory attack) mechanical forces. The likely occurrence of variation during leaf ontogeny in these traits may thus have implications for hydrodynamic performance and vulnerability to herbivory damage, and may be associated with changes in morphologic and chemical traits. Seagrasses, marine flowering plants, consist of shoot bundles holding several leaves with different developmental stages, in which outer older leaves protect inner younger leaves. In this study we examined the long‐lived seagrass Posidonia oceanica to determine ontogenic variation in mechanical traits across leaf position within a shoot, representing different developmental stages. Moreover, we investigated whether or not the collection procedure (classical uprooted shoot versus non‐destructive shoot method: cutting the shoot without a portion of rhizome) and time span after collection influence mechanical measurements. Neither collection procedure nor time elapsed within 48 h of collection affected measurements of leaf biomechanical traits when seagrass shoots were kept moist in dark cool conditions. Ontogenic variation in mechanical traits in P. oceanica leaves over intermediate and adult developmental stages was observed: leaves weakened and lost stiffness with aging, while mid‐aged leaves (the longest and thickest ones) were able to withstand higher breaking forces. In addition, younger leaves had higher nitrogen content and lower fiber content than older leaves. The observed patterns may explain fine‐scale within‐shoot ecological processes of leaves at different developmental stages, such as leaf shedding and herbivory consumption in P. oceanica.  相似文献   
55.
56.
57.
58.
A simple parameter estimation procedure, designated as integration-based estimation (IBE), was introduced to determine the hydraulic properties of an aquifer using slug test models subjected to certain flow geometries such as radial and spherical flows. The basic idea behind the proposed IBE approach is to link an integration value at pre-defined normalized head levels for field data with that of a theoretical type curve. The IBE method removes the need for the implementation of the classical graphical matching process which would be ineffective to acquire aquifer parameters for non-ideal aquifer conditions. As the second aspect of this study, a new decision tool was suggested to determine the suitable slug test model to be utilized for the site data since diagnosing the flow character properly is of crucial importance for following a convenient analysis procedure. The estimation performance and limitation of the proposed IBE method were tested for several slug test scenarios including radial and spherical flow models with a number of synthetically generated data sets as well as a field application. Results reveal that the IBE together with the identification methodology not only is able to retrieve aquifer parameters as reliable as the existing techniques in the literature but also diagnoses the flow character precisely as demonstrated in this study.  相似文献   
59.
Wettability is a fundamental property controlling the extent of wetting in flat and granular solids. In natural soils, wettability affects a wide variety of processes including infiltration, preferential flow and surface runoff. In mineral processing, wettability is paramount in enhancing the efficiency of separation of minerals from gangue. The manipulation of surface wettability is equally crucial in many industrial applications. For instance, superhydrophobic surfaces are those on which water drops roll off easily and as such are used for self-cleaning applications. Therefore, while wettability is strongly cross-disciplinary, its evolution has been discipline-specific with a direct extrapolation or transfer of concepts, approaches, and methods to ground engineering unlikely to remain valid. This paper synthesizes relevant aspects from surface chemistry, materials science, mining engineering, and soil science, and discusses their implications within the context of new granular materials that resist wetting, for use in barriers or ground improvement and, in unsaturated soils, where the effects of wettability have been documented.  相似文献   
60.
This study defines the source area, sub-aerial weathering, and sedimentary cycle level, as well as heavy metal content and origin, of the Çoruh River bed sediments. The studied sediments are geochemically classified as litharenite based on the ratio of the major element contents. Relative to the Upper Continental Crust (UCC), trace elements Rb, Sr, Ba, Th, U, Zr, Hf, Y, Nb, and Pb are generally depleted; Co, Ni, Cu, Sc, and V are generally enriched; and Au is depleted in some places and enriched in other places. The rare earth element (REE) distributions of the samples exhibit a trend similar to that of the upper continental crust (UCC); however, low to moderate depletion occurs in the bed sediments in UCC. The analyzed samples exhibit low Chemical Index of Alteration (CIA) values, Plagioclase Index of Alteration (PIA) values (<50), CIA/WIP (Weathering Index ratios <1), and substantially high Index of Compositional Variability values (ICV) (>1). Thus, the samples are not chemically mature and are mainly derived from non-altered sources and were exposed the simple cycling history. REEs are depleted in the river bed sediments, unlike the world river average silt, world river average clay, and suspended sediment in world rivers. Minor enrichment of Zn, Sn, and Sc contents, low-to-moderate enrichment of Cu content, very severe enrichment of as content, and extremely severe enrichment of Ni content of the analyzed samples are observed. Consequently, stream bed sediments are derived from intermediate sources close to mid-continental crust rather than felsic sources Low-to-moderate degrees of chemical weathering of these sediments indicate increased tectonic activity, increased erosion, and rapid sedimentation in semiarid to arid conditions in the source regions over time. Thus, the sediments are chemically immature. These sediments are exposed to lithogenic and anthropogenic contamination.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号