首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   3篇
地球物理   2篇
地质学   15篇
天文学   14篇
  2019年   3篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   3篇
  2010年   2篇
  2009年   4篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2000年   1篇
  1994年   1篇
排序方式: 共有31条查询结果,搜索用时 15 毫秒
11.
Recent developments in multiple-collector magnetic-sector ICP-MS (inductively coupled plasma-mass spectrometry) have permitted the relative abundances of the two isotopes 63 and 65 of copper to be measured with unprecedented precision (40 ppm). Here, we report Cu isotopic variations among eight carbonaceous chondrites (CCs) from the CI, CM, CO, and CV groups and the presently ungrouped Tagish Lake, and 10 ordinary chondrites (OCs) from the H, L, and LL groups. The widest isotopic range of ∼0.8‰ per a.m.u. is observed for the carbonaceous chondrites. Copper in carbonaceous chondrites becomes isotopically lighter with petrologic type in the order 1 to 3 but seems extremely homogeneous for each type. The Cu isotopic composition of Tagish Lake confirms its other characteristics that are intermediate between CI and CM. In three of the groups (CI-CM-CO), as well as for Tagish Lake, 63Cu excess over terrestrial mantle abundances correlates well with 16O excess. For all four groups, 63Cu excess also correlates remarkably well with elemental refractory/volatile ratios (e.g., Ca/Mn). For ordinary chondrites, small differences exist between the H, L, and LL groups, with Cu becoming isotopically heavier in that order. Equilibrated and unequilibrated samples, however, exhibit the same Cu isotopic signature within each group. Although the range of Cu isotopic compositions in ordinary chondrites is smaller than in carbonaceous chondrites, 63Cu excesses still correlate with 16O excesses. The observed trends of isotopic variation seem incompatible with a single-stage fractionation process by either volatilization or low-temperature metamorphism. The correlations between 63Cu excesses and 16O excesses suggest the presence of at least two and perhaps three isotopically distinct Cu reservoirs in the early Solar System: (1) an Earth-like reservoir common to the CI and LL probably representing the main Cu stock of the inner Solar System, (2) a reservoir present in all carbonaceous chondrites, but most abundant in CV, with large 63Cu and 16O excesses (this reservoir is probably hosted in refractory material), and (3) possibly a third reservoir present in ordinary chondrites. The OC trend may also be explained as a mixture of the first two Cu reservoirs if its oxygen was first equilibrated with nebular gas. The coexistence of 63Cu and 16O excesses in the same component raises the issue of how volatile Cu was preserved in refractory material. A strong correlation between 63Cu/65Cu and Ni/Cu ratios suggests that 63Cu excess may have originated as more refractory 63Ni (T1/2 = 100 yr) upon irradiation of refractory grains by electromagnetic flares and particle bursts during the T-Tauri phase of the Sun.  相似文献   
12.
We report on the petrology and geochemistry of the Northwest Africa 2737 (NWA 2737) meteorite that was recovered from the Morrocan Sahara in 2000. It is the second member of the chassignite subclass of the SNC (Shergotitte-Nakhlite-Chassignite) group of meteorites that are thought to have originated on Mars. It consists of black olivine- and spinel-cumulate crystals (89.7 and 4.6 wt%, respectively), with intercumulus pyroxenes (augite 3.1 wt% and pigeonite-orthopyroxene 1.0 wt%), analbite glass (1.6 wt%) and apatite (0.2 wt%). Unlike Chassigny, plagioclase has not been observed in NWA 2737. Olivine crystals are rich in Mg, and highly equilibrated (Fo = 78.7 ± 0.5 mol%). The black color of olivine grains may be related to the strong shock experienced by the meteorite as revealed by the deformation features observed on the macroscopic to the atomic scale. Chromite is zoned from core to rim from Cr83.4Uv3.6Sp13.0 to Cr72.0Uv6.9Sp21.1. Pyroxene compositional trends are similar to those described for Chassigny except that they are richer in Mg. Compositions range from En78.5Wo2.7Fs18.8 to En76.6Wo3.2Fs20.2 for the orthopyroxene, from En73.5Wo8.0Fs18.5 to En64.0Wo22.1Fs13.9for pigeonite, and from En54.6Wo32.8Fs12.6 to En46.7Wo44.1Fs9.2 for augite. Bulk rock oxygen isotope compositions confirm that NWA 2737 is a new member of the martian meteorite clan (Δ17O = 0.305 ± 0.02‰, n = 2). REE abundances measured in NWA 2737 mineral phases are similar to those in Chassigny and suggest a genetic relationship between these two rocks. However, the parent melt of NWA 2737 was less evolved and had a lower Al abundance.  相似文献   
13.
We report on an improved method for determining trace element abundances in seawater and other natural waters. The analytical procedure involves co‐precipitation on iron hydroxides after addition of a Tm spike, and measurement by inductively coupled plasma‐sector field mass spectrometry (ICP‐SFMS). The validity of the method was assessed through a series of co‐precipitation experiments, using ultra‐diluted solutions of a certified rock reference material (BIR‐1). Results obtained for four natural water reference materials (NASS‐5, CASS‐4, SLEW‐3, SLRS‐4) are in agreement with published working values for rare earth elements, yttrium, vanadium and, when available, for hafnium, zirconium, thorium and scandium. A set of proposed values with uncertainties typically better than 8% RSD is proposed for Hf, Zr and Th.  相似文献   
14.
15.
Trace element geochemistry of K-rich impact spherules from howardites   总被引:1,自引:0,他引:1  
The howardite–eucrite–diogenite (HED) achondrites are a group of meteorites that probably originate from the asteroid Vesta. Howardites are complex polymict breccias that sometimes contain, in addition to various rock debris, impact melt glasses which show an impressive range of compositions. In this paper we report on the geochemistry and O isotopes of a series of 6 Saharan polymict breccias (4 howardites and 2 polymict eucrites), and on the trace element abundances of high-K impact spherules found in two of them, Northwest Africa (NWA) 1664 and 1769, which are likely paired.The high-K impact spherules found in the howardites NWA 1664 and NWA 1769 display remarkable trace element patterns. Compared to eucrites or howardites, they all show prominent enrichments in Cs, Rb, K, Li and Ba, strong depletion in Na, while the REE and other refractory elements are unfractionated. These features could not have been generated during impact melting of their host howardites, nor other normal HED target materials. The involvement of Na-poor rocks, and possibly rocks of granitic composition, appears likely. Although these lithologies cannot be well constrained at present, our results demonstrate that the surface of Vesta is certainly more diverse than previously thought. Indeed, despite the large number of available HED meteorites (about 1000 different meteorites), the latter are probably not sufficient to describe the whole surface of their parent body.  相似文献   
16.
The Howardite–Eucrite–Diogenite (HED) suite is a family of differentiated meteorites that provide a unique opportunity to study the differentiation of small bodies. The likely parent-body of this meteorite group, (4) Vesta is presently under study by the Dawn mission, scrutinizing its surface in the visible and NIR infrared range. Here, we discuss how well the magmatic trends observed in HED might be retrieved from NIR spectroscopy, by studying laboratory spectra of 10 HED meteorites together with spectra from the RELAB database. We show that although an exsolution process did occur for most eucrites (i.e. decomposition of a primary calcic pyroxene into a high-Ca and low-Ca pyroxene), it does not affect the “bulk pyroxene” trend retrieved from the location of the pyroxene crystal field bands (Band I with a maximum of absorption around at about 1 μm and Band II around 2 μm). Absolute values of the chemical composition appears however to deviate from the expected chemical composition. We show that mechanical mixture (i.e. impact gardening) will produce a linear mixing in the pyroxenes band position diagram (Band I position vs Band II position). This diagram also reveals that howardite are not pure mixtures of an average eucrite and average diogenite. Because asteroid surfaces are expected to show topography, we also study the effect of observation geometry on the NIR spectra of an eucrite and a diogenite by measuring the bi-directional reflectance spectra from 0.4 to 4.6 μm. Results show that these meteorites tend to act as forward scatterers, leading to a decrease of integrated band area (relative to the continuum) at high phase angles. The position of the two strong crystal field bands shows only small variability with observation geometry. Retrieval of the magmatic trends from the Band I vs Band II diagram should not be affected by observation geometry effects. Finally we performed NIR reflectance measurement on olivine diogenites. The presence of olivine can be suggested by using the Band Area Ratio vs Band I diagram, but this phase might affect the retrieval of pyroxene composition from the position of Band I and Band II.  相似文献   
17.
Mandler and Elkins‐Tanton ( 2013 ) recently proposed an upgraded magma ocean model for the differentiation history of the giant asteroid 4 Vesta. They show that a combination of both equilibrium crystallization and fractional crystallization processes can reproduce the major element compositions of eucritic melts and broadly the range of mineral compositions observed in diogenites. They assert that their model accounts for all the howardites, eucrites, and diogenites (HEDs), and use it to predict the crustal thickness and the proportions of the various lithologies. Here, we show that their model fails to explain the trace element diversity of the diogenites, contrary to their claim. The diversity of the heavy REE enrichment exhibited by the orthopyroxenes in diogenites is inconsistent with crystallization of these cumulates in either shallow magma chambers replenished by melts from a magma ocean or in a magma ocean. Thus, proportions of the various HED lithologies and the crustal thickness predicted from this model are not necessarily valid.  相似文献   
18.
The eucritic meteorites are basaltic rocks that originate from the upper part of the crust of some small bodies as exemplified possibly by asteroid 4-Vesta. A few eucrites appear to have been modified by different degrees of a late stage alteration process that caused significant variations in mineralogy. Three distinct alteration stages are identified: (1) Fe-enrichment along the cracks that cross cut the pyroxene crystals (“Fe-metasomatism”); secondary olivine and minute amounts of troilite are found only occasionally in cracks at this stage; (2) deposits of Fe-rich olivine (Fa64-86) and minor amounts of troilite are frequent inside the cracks; sporadic secondary Ca-rich plagioclase (An97-98) is associated with the fayalitic olivine; (3) at this stage, the Fe-enrichment of the pyroxene is accompanied by a marked Al-depletion; moreover, secondary Ca-rich plagioclase is more frequent and partly fills some cracks or rims of the primary plagioclase crystals. The composition of the secondary phases on one hand, the lack of incompatible trace element enrichment in the metasomatized pyroxenes on the other hand, rule out a silicate melt as the metasomatic agent. Although no hydrous phase has been yet identified in the studied samples, aqueous fluids are plausible candidates for explaining the deposits of ferroan olivine and anorthitic plagioclase inside the fractures of the studied unequilibrated eucrites.  相似文献   
19.
Abstract— We report on the petrology and geochemistry of Northwest Africa (NWA) 4215, an unbrecciated diogenite recovered in the Sahara. This single stone, weighing 46.4 g, displays a wellpreserved cumulative texture. It consists of zoned xenomorphic orthopyroxene grains on the order of 500 μm in size, along with a few large chromite crystals (<5 vol%, up to 3 mm). Accessory olivine and scarce diopside grains occur within the groundmass, usually around the chromite crystals. Minor phases are cristobalite, troilite, and metal. Unlike other diogenites, orthopyroxenes (En76.2Wo1.1Fs22.7 to En68.6Wo5.5Fs25.9), olivines (Fo76 to Fo71), and chromites (Mg# = 14.3 44.0, Cr# = 42.2–86.5) are chemically zoned. The minor element behavior in orthopyroxenes and the intricate chemical profiles obtained in chromites indicate that the zonings do not mirror the evolution of the parental melt. We suggest that they resulted from reaction of the crystals with intercumulus melt. In order to preserve the observed zoning profiles, NWA 4215 clearly cooled significantly faster than other diogenites. Indeed, the cooling rate determined from the diffusion of Cr in olivine abutting chromite is in the order of 10–50 °C/a, suggesting that NWA 4215 formed within a small, shallow intrusion. The bulk composition of NWA 4215 has been determined for major and trace elements. This meteorite is weathered and its fractures are filled with calcite, limonite, and gypsum, typical of hot desert alteration. In particular, the FeO, CaO abundances and most of the trace element concentrations (Sr, Ba, Pb, and REE among others) are high and indicate a significant contribution from the secondary minerals. To remove the terrestrial contribution, we have leached with HCl a subsample of the meteorite. The residue, made essentially of orthopyroxene and chromite, has similar major and trace element abundances to diogenites as shown by the shape of its REE pattern or by its high Al/Ga ratio. The connection of NWA 4215 with diogenites is confirmed by its O‐isotopic composition (δ17O = 1.431 ± 0.102‰, δ18O = 3.203 ± 0.205‰, Δ17O = ?0.248 ± 0.005‰).  相似文献   
20.
We have measured the bi-directional reflectance phase function on selected meteorite samples (1 howardite, 1 eucrite, 1 diogenite, Orgeuil (CI), Tagish Lake (CC), Allende (CV), Lunar meteorite (MAC 88105), Forest Vale (H4)) covering part of the geochemical and petrologic diversity expected for asteroid surfaces. Samples were measured as powders, for which we achieved reflectance measurements from phase angles down to 3°, and up to 150°, at five different wavelengths covering the VIS–NIR spectral region. The data were fitted by the photometric model of Hapke (Hapke, B. [1993]. Theory of reflectance and emittance spectroscopy. Cambridge University Press, Cambridge). The physical sense of the retrieved Hapke’s parameters seems unclear but they permit to interpolate the data to any observation geometry. Strong opposition effects were observed for all samples. The absolute intensity of this effect appears moderately variable among our sample suite, and is not correlated with the average sample reflectance. We interpret this observation as Shadow-Hiding Opposition Effect (SHOE). In the case of samples presenting intense absorption bands (the Fe crystal field band at 1 μm of HED and the ordinary chondrite), we observe significant dependence of band depth to phase angle, up to 70°, even for moderate variation of phase angle. In addition, a general trend of spectral reddening with phase angle is observed. This reddening, linear with phase angle, is present in all meteorites studied. This behavior is not predicted by classical radiative theories. We propose that small-scale roughness (of the order of or below the wavelength) may induce such a behavior.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号