首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2057篇
  免费   132篇
  国内免费   34篇
测绘学   34篇
大气科学   119篇
地球物理   508篇
地质学   990篇
海洋学   140篇
天文学   299篇
综合类   6篇
自然地理   127篇
  2021年   28篇
  2020年   18篇
  2019年   40篇
  2018年   57篇
  2017年   54篇
  2016年   69篇
  2015年   56篇
  2014年   66篇
  2013年   130篇
  2012年   74篇
  2011年   89篇
  2010年   87篇
  2009年   110篇
  2008年   93篇
  2007年   59篇
  2006年   87篇
  2005年   94篇
  2004年   76篇
  2003年   70篇
  2002年   77篇
  2001年   56篇
  2000年   41篇
  1999年   33篇
  1998年   26篇
  1997年   26篇
  1996年   26篇
  1995年   26篇
  1994年   26篇
  1993年   16篇
  1992年   19篇
  1991年   32篇
  1990年   32篇
  1989年   27篇
  1988年   14篇
  1987年   37篇
  1986年   17篇
  1985年   21篇
  1984年   34篇
  1983年   26篇
  1982年   28篇
  1981年   20篇
  1980年   20篇
  1979年   15篇
  1978年   21篇
  1977年   15篇
  1976年   11篇
  1975年   20篇
  1974年   20篇
  1973年   12篇
  1970年   10篇
排序方式: 共有2223条查询结果,搜索用时 31 毫秒
901.
We describe a new approach that allows for systematic causal attribution of weather and climate-related events, in near-real time. The method is designed so as to facilitate its implementation at meteorological centers by relying on data and methods that are routinely available when numerically forecasting the weather. We thus show that causal attribution can be obtained as a by-product of data assimilation procedures run on a daily basis to update numerical weather prediction (NWP) models with new atmospheric observations; hence, the proposed methodology can take advantage of the powerful computational and observational capacity of weather forecasting centers. We explain the theoretical rationale of this approach and sketch the most prominent features of a “data assimilation–based detection and attribution” (DADA) procedure. The proposal is illustrated in the context of the classical three-variable Lorenz model with additional forcing. The paper concludes by raising several theoretical and practical questions that need to be addressed to make the proposal operational within NWP centers.  相似文献   
902.
903.
博罗霍努岩体是发育在新疆伊犁北部的一个大型海西期花岗岩体,总体沿近 SE—NW 向分布,出露面积逾2000km~2。该岩体主要包括三类花岗岩:灰黑色辉石闪长岩、浅色黑云母花岗岩和紫红色黑云母钾长花岗岩。锆石 U—Pb La-ICP-MS 定年表明,辉石闪长岩的年龄为301±7Ma,黑云母花岗岩的年龄范围为294±7~285±7Ma,而黑云母钾长花岗岩则形成于280±5~266±6Ma。岩石地球化学分析显示,黑云母花岗岩和钾长花岗岩以准铝或弱过铝Ⅰ型花岗岩为主,个别属于弱过铝 S 型花岗岩。在微量元素方面,这些花岗岩均富集轻稀土而亏损重稀土,但来自两个剖面的花岗岩具有不同的稀土元素配分模式,可能代表它们的岩浆源区有所不同,因此需要进一步对这些花岗岩进行同位素地质学研究。相对于洋脊花岗岩而言,博罗霍努岩体的花岗岩明显富集 K,Rb,Ba 和 Th,同时,显著亏损 Nb,Ta,Y 和 Yh。以上地球化学特征及微量元素判别图表明,这些花岗岩类形成于俯冲有关的火山岛弧环境。结合伊犁及邻区岩浆岩的特征及其时代,可以认为博罗霍努岩体的形成与天山北部洋壳向南的俯冲造山作用有关。西天山北部俯冲造山作用最终在中二叠世结束,并在中一晚二叠世进入陆内造山和伸展拉张阶段。  相似文献   
904.
Hydroelectric reservoirs generate energy without significant combustion of fossil fuels. However, these systems can, potentially, emit greenhouse gases (GHG’s) at a rate which may be significant at the global scale, and, possible, co-equal, per kilowatt-hour, to that from conventional coal or oil-fired systems. Although much of the new construction of hydroelectric reservoirs is in the tropics, most of the data on GHG emissions comes from temperate regions. Further, much of the existing data on reservoir gas emissions comes from single sites, usually near the terminal dams. Large tropical reservoirs often involve the impoundments of river systems with complex morphology which in turn can cause spatial heterogeneity in gas flux. We evaluated spatial and seasonal variability in CO2 concentrations and gas flux for five large (50–1,400 km2) reservoirs in the Cerrado region of Brazil. Most of data set (87% of all measurements) showed CO2 supersaturation and net efflux to the atmosphere. There was as much or more variation in pCO2 over space and among seasons. The large studied reservoirs showed different zones in terms of CO2 emission because those fluxes are dependent on flooded biomass, watershed input of organic matter and dam operation regime. Here we demonstrate that the reservoirs in the Brazilian Cerrado have low rates of CO2 emissions compared to existing global comparisons. Our results suggest that ignoring the spatial variability can lead to more than 25% error in total system gas flux.  相似文献   
905.
Brucite (Mg(OH)2) dissolution rate was measured at 25°C in a mixed-flow reactor at various pH (5 to 11) and ionic strengths (0.01 to 0.03 M) as a function of the concentration of 15 organic and 5 inorganic ligands and 8 divalent metals. At neutral and weakly alkaline pH, the dissolution is promoted by the addition of the following ligands ranked by decreasing effectiveness: EDTA ≥ H2PO4 > catechol ≥ HCO3 > ascorbate > citrate > oxalate > acetate ∼ lactate and it is inhibited by boric acid. At pH >10.5, it decreases in the presence of PO43−, CO32−, F, oxine, salicylate, lactate, acetate, 4-hydroxybenzoate, SO42− and B(OH)4 with orthophosphate and borate being the strongest and the weakest inhibitor, respectively. Xylose (up to 0.1 M), glycine (up to 0.05 M), formate (up to 0.3 M) and fulvic and humic acids (up to 40 mg/L DOC) have no effect on brucite dissolution kinetics. Fluorine inhibits dissolution both in neutral and alkaline solutions. From F sorption experiments in batch and flow-through reactors and the analysis of reacted surfaces using X-ray Photoelectron Spectroscopy (XPS), it is shown that fluorine adsorption is followed by its incorporation in brucite lattice likely via isomorphic substitution with OH. The effect of eight divalent metals (Sr, Ba, Ca, Pb, Mn, Fe, Co and Ni) studied at pH 4.9 and 0.01 M concentration revealed brucite dissolution rates to be correlated with the water molecule exchange rates in the first hydration sphere of the corresponding cation.The effect of investigated ligands on brucite dissolution rate can be modelled within the framework of the surface coordination approach taking into account the adsorption of ligands on dissolution-active sites and the molecular structure of the surface complexes they form. The higher the value of the ligand sorption constant, the stronger will be its catalyzing or inhibiting effect. As for Fe and Al oxides, bi- or multidentate mononuclear surface complexes, that labilize Mg-O bonds and water coordination to Mg atoms at the surface, enhance brucite dissolution whereas bi- or polynuclear surface complexes tend to inhibit dissolution by bridging two or more metal centers and extending the cross-linking at the solid surface. Overall, results of this study demonstrate that very high concentrations of organic ligands (0.01-0.1 M) are necessary to enhance or inhibit brucite dissolution. As a result, the effect of extracellular organic products on the weathering rate of Mg-bearing minerals is expected to be weak.  相似文献   
906.
Continuous magmatic activity occurred in the western Chinese Tianshan, Central Asia, from the Carboniferous to the Permian, i.e. before and after the Late Carboniferous amalgamation of Junggar and the Yili Blocks. Zircon U–Pb LA-ICPMS and Ar–Ar data reveal a coincidence in time between regional wrench faulting and granitoid emplacement. Permian post-collisional granitoids crop out within or at the margins of large-scale dextral strike-slip shear zones, some of them show synkinematic fabrics. The whole rock geochemical features of the Early-Middle Permian granitoids indicate an evolution from high-K calc-alkaline towards alkaline series. In other places of the North Tianshan, alkaline magmatism occurred together with deep marine sedimentation within elongated troughs controlled by wrench faults. Therefore, in contrast with previous interpretations that forwarded continental rift or mantle plume hypotheses, the coexistence of diverse magmatic sources during the same tectonic episode suggests that post-collisional lithosphere-scale transcurrent shearing tightly controlled the magmatic activity during the transition from convergent margin to intraplate anorogenic processes.  相似文献   
907.
The surface chemistry of natural wollastonite, diopside, enstatite, forsterite, and albite in aqueous solutions was characterized using both electrokinetic techniques and surface titrations performed for 20 min in batch reactors. Titrations performed in such reactors allow determination of both proton consumption and metal release from the mineral surface as a function of pH. The compositions, based on aqueous solution analysis, of all investigated surfaces vary dramatically with solution pH. Ca and Mg are preferentially released from the surfaces of all investigated divalent metal silicates at pH less than ∼8.5-10 but preferentially retained relative to silica at higher pH. As such, the surfaces of these minerals are Si-rich and divalent metal poor except in strongly alkaline solutions. The preferential removal of divalent cations from these surfaces is coupled to proton consumption. The number of protons consumed by the preferential removal of each divalent cation is pH independent but depends on the identity of the mineral; ∼1.5 protons are consumed by the preferential removal of each Ca atom from wollastonite, ∼3 protons are consumed by the preferential removal of each Mg or Ca atom from diopside or enstatite, and ∼4 protons are consumed by the preferential removal of each Mg from forsterite. These observations are interpreted to stem from the creation of additional ‘internal’ adsorption sites by the preferential removal of divalent metal cations which can be coupled to the condensation of partially detached Si. Similarly, Na and Al are preferentially removed from the albite surface at 2 > pH > 11; mass balance calculations suggest that three protons are consumed by the preferential removal of each Al atom from this surface over this entire pH range. Electrokinetic measurements on fresh mineral powders yield an isoelectric point (pHIEP) 2.6, 4.4, 3.0, 4.5, and <1, for wollastonite, diopside, enstatite, forsterite, and albite, respectively, consistent with the predominance of SiO2 in the surface layer of all of these multi-oxide silicates at acidic pH. Taken together, these observations suggest fundamental differences between the surface chemistry of simple versus multi-oxide minerals including (1) a dependency of the number and identity of multi-oxide silicate surface sites on the aqueous solution composition, and (2) the dominant role of metal-proton exchange reactions on the reactivity of multi-oxide mineral surfaces including their dissolution rate variation with aqueous solution composition.  相似文献   
908.
The theoretical explosive energy used in blasting is a common issue in many recent research works (Spathis 1999; Sanchidrian 2003). It is currently admitted that the theoretical available energy of the explosives is split into several parts during a blast: seismic, kinetic, backbreaks, heave, heat and fragmentation energies. Concerning this last one, the energy devoted to the breakage and to the creation of blocks within the muckpile can be separated from the microcracking energy which is devoted to developing new and/or extending existing micro cracks within the blocks (Hamdi et al. 2001; López et al. 2002). In order to investigate these two types of energy, a first and important task is to precisely study the main parameters characterising the two constitutive elements of the rock mass (rock matrix and discontinuity system). This should provide useful guidelines for the choice of the blasting parameters (type of explosive, blasting pattern, etc.), in order to finally control the comminution process. Within the frame of the EU LESS FINES research project, devoted to the control of fines production, the methodology was developed in order to: (1) characterize the in situ rock mass, by evaluating the density, anisotropy, interconnectivity and fractal dimension of the discontinuity system and (2) evaluate fragmentation (both micro and macro) energy spent during the blasting operation. The methodology was applied to three production blasts performed in the Klinthagen quarry (Sweden) allowing to estimate the part of the fragmentation energy devoted to the formation of muck pile blocks on one side and to the muckpile blocks microcracking on the other side.  相似文献   
909.
The short term (2–40 days) dissolution of enstatite, diopside, and tremolite in aqueous solution at low temperatures (20–60°C) and pH 1–6 has been studied in the laboratory by means of chemical analyses of reacting solutions for Ca2+, Mg2+, and Si(OH)4 and by the use of X-ray photoelectron spectroscopy (XPS) for detecting changes in surface chemistry of the minerals. All three minerals were found to release silica at a constant rate (linear kinetics) providing that ultrafine particles, produced by grinding, were removed initially by HF treatment. All three also underwent incongruent dissolution with preferential release of Ca and/or Mg relative to Si from their outermost surfaces. The preferential release of Ca, but not Mg for diopside at pH 6 was found by both XPS and solution chemistry verifying the theoretical prediction of greater mobility of cations located in M2 structural sites. Loss mainly from M2 sites also explains the degree of preferential loss of Mg from enstatite at pH 6; similar structural arguments apply to the loss of Ca and Mg from the surface of tremolite. In the case of diopside and tremolite initial incongruency was followed by essentially congruent cation-plus-silica dissolution indicating rapid formation of a constant-thickness, cation-depleted surface layer. Cation depletion at elevated temperature and low pH (~ 1) for enstatite and diopside was much greater than at low temperature and neutral pH, and continued reaction resulted in the formation of a surface precipitate of pure silica as indicated by solubility calculations, XPS analyses, and scanning electron microscopy.From XPS results at pH 6, model calculations indicate a cation-depleted altered surface layer of only a few atoms thickness in all three minerals. Also, lack of shifts in XPS peak energies for Si, Ca, and Mg, along with undersaturation of solutions with respect to all known Mg and Ca silicate minerals, suggest that cation depletion results from the substitution of hydrogen ion for Ca2+ and/or Mg2+ in a modified silicate structure and not from the precipitation of a new, radically different surface phase. These results, combined with findings of high activation energies for dissolution, a non-linear dependence on aH+ for silica release from enstatite and diopside, and the occurrence of etch pitting, all point to surface chemical reaction and not bulk diffusion (either in solution or through altered surface layers) as the rate controlling mechanism of iron-free pyroxene and amphibole dissolution at earth surface temperatures.  相似文献   
910.
A large number of certified and other reference samples are available for use in analytical geochemistry. Certified materials are preferred, but of much more limited availability than other reference samples for most geochemical applications. The availability of rock, sediment, soil, water, and plant reference samples is outlined; ore and mineral separate reference samples are not included in the discussion. The preparation of these materials, including the establishment of certified or recommended concentrations, is then reviewed. It is shown that comparable quality can be achieved for both certified and recommended concentrations, though it has not always been achieved in the past. Finally, the most appropriate ways to use reference samples in quality control and instrumental calibration are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号