The North Anatolian Fault Zone (NAFZ) is one of the most hazardous active faults on Earth, yet its Pliocene space‐time propagation across the north Aegean domain remains poorly constrained. We use low‐temperature multi‐thermochronology and inverse thermal modelling to quantify the cooling history of the upper crust across the Olympus range. This range is located in the footwall of a system of normal faults traditionally interpreted as resulting from superposed Middle–Late Miocene N–S stretching, related to the back‐arc extension of the Hellenic subduction zone, and a Pliocene‐Quaternary transtensional field, attributed to the south‐westward propagation of the NAFZ. We find that accelerated exhumational cooling occurred between 12 and 6 Ma at rates of 15–35 °C Ma?1 and decreased to <3 °C Ma?1 by 8–6 Ma. The absence of significant Plio‐Pleistocene cooling across Olympus suggests that crustal exhumation there is driven by late Miocene back‐arc extension, while the impact of the NAFZ remains limited. 相似文献
This study describes normal fault zones formed in foreland arkosic turbidites (the Grès d'Annot Formation, SW French Alps) under deep diagenesis conditions (~200 °C) and highlights the occurrence of two markedly different fault‐rock types: (1) the foliated fault rocks of the Moutière‐Restefond area; and (2) the dilatant fault rocks of the Estrop area. The deformation of (1) is dominated by intra‐ and transgranular fracturing, pressure solution of quartz and feldspar grains and syn‐kinematic phyllosilicate precipitation resulting from feldspar alteration. The combination of these mechanisms results in a strongly anisotropic strain with intense shortening normal to the foliation (pressure solution) and extension parallel to the foliation (quartz‐ and calcite‐sealed extension veins). This deformation implies local mass transfer that may be achieved without (or with limited) volume change. The deformation of (2) is expressed as dilatant quartz‐sealed veins and breccia textures in which the main mechanisms are transgranular fracturing and quartz precipitation. Type (2) implies fault volume increase, isotropy of deformation and mass transfer at distances larger than in type (1). This study discusses the origins of (1) and (2) and shows that the permeability of (1) is anisotropic, with higher values than the host rocks parallel to the Y main deformation axis (i.e. perpendicular to the slip vector), whereas the permeability of (2) is isotropic and equivalent to that of the host rocks. 相似文献
Magnesium and strontium isotope signatures were determined during different seasons for the main rivers of the Moselle basin, northeastern France. This small basin is remarkable for its well-constrained and varied lithology on a small distance scale, and this is reflected in river water Sr isotope compositions. Upstream, where the Moselle River drains silicate rocks of the Vosges mountains, waters are characterized by relatively high 87Sr/86Sr ratios (0.7128-0.7174). In contrast, downstream of the city of Epinal where the Moselle River flows through carbonates and evaporites of the Lorraine plateau, 87Sr/86Sr ratios are lower, down to 0.70824.Magnesium in river waters draining silicates is systematically depleted in heavy isotopes (δ26Mg values range from −1.2 to −0.7‰) relative to the value presently estimated for the continental crust and a local diorite (−0.5‰). In comparison, δ26Mg values measured in soil samples are higher (∼0.0‰). This suggests that Mg isotope fractionation occurs during mineral leaching and/or formation of secondary clay minerals. On the Lorraine plateau, tributaries draining marls, carbonates and evaporites are characterized by low Ca/Mg (1.5-3.2) and low Ca/Sr (80-400) when compared to local carbonate rocks (Ca/Mg = 29-59; Ca/Sr = 370-2200), similar to other rivers draining carbonates. The most likely cause of the Mg and Sr excesses in these rivers is early thermodynamic saturation of groundwater with calcite relative to magnesite and strontianite as groundwater chemistry progressively evolves in the aquifer. δ26Mg of the dissolved phases of tributaries draining mainly carbonates and evaporites are relatively low and constant throughout the year (from −1.4‰ to −1.6‰ and from −1.2‰ to −1.4‰, respectively), within the range defined for the underlying rocks. Downstream of Epinal, the compositions of the Moselle River samples in a δ26Mg vs. 87Sr/86Sr diagram can be explained by mixing curves between silicate, carbonate and evaporite waters, with a significant contribution from the Vosgian silicate lithologies (>70%). Temporal co-variation between δ26Mg and 87Sr/86Sr for the Moselle River throughout year is also observed, and is consistent with a higher contribution from the Vosges mountains in winter, in terms of runoff and dissolved element flux. Overall, this study shows that Mg isotopes measured in waters, rocks and soils, coupled with other tracers such as Sr isotopes, could be used to better constrain riverine Mg sources, particularly if analytical uncertainties in Mg isotope measurements can be improved in order to perform more precise quantifications. 相似文献
The main structures of a subduction zone are as follows.
1. (1) On the outer wall: faults, formed either by reactivation of the structural grain of the oceanic plate, when the latter is slightly oblique to the trench, or by a new fault network parallel to the trench, or both. The width of the faulted zone is about 50 miles.
2. (2) On the inner wall: either an accretionary prism or an extensional fault network, or both; collapsed structures and slumps are often associated, sometimes creating confusion with the accretionary structures.
3. (3) The overall structure of the trench itself is determined by the shape of the edge of the continental crust or of the island arc. Its detailed structure, however, is related to the oceanic plate, namely when the structural grain of the latter is slightly oblique to the trench, which then takes an “en echelon” form. Collapsed units can fill up the trench which is, in that case, restricted to an irregular narrow depression; the tectonic framework of the trench can be buried under a sedimentary blanket when the sedimentation rate is high and the trench bottom is a large, flat area.
Two extreme types of active margins can be distinguished: convergent compressive margins, when the accretionary mechanism is strongly active; and convergent extensional margins where the accretionary mechanism is absent or only weakly active.
The status of a given margin between these two extreme types is related to the convergence rate of the plates, the dip of the subduction zone, the sedimentation activity and the presence of a continental obstacle, because oceanic seamounts and aseismic ridges are easily subducted.
Examples are taken from the Barbados, Middle America, Peru, Kuril, Japan, Nankai, Marianna, Manila, New Hebredes and Tonga trenches. 相似文献
Stylolites are rough surfaces that form by localized stress-induced dissolution. Using a set of limestone rock samples collected at different depths from a vertical section in Cirque de Navacelles (France), we study the influence of the lithostatic stress on the stylolites morphology on the basis of a recent morphogenesis model. We measured the roughness of a series of bedding-parallel stylolites and show that their morphology exhibits a scaling invariance with two self-affine scaling regimes separated by a crossover-length (L) at the millimeter scale consistent with previous studies. The importance of the present contribution is to estimate the stylolite formation stress σ from the sample position in the stratigraphic series and compare it to the crossover-length L using the expected relationship: L ~ σ?2. We obtained a successful prediction of the crossover behavior and reasonable absolute stress magnitude estimates using relevant parameters: depth of stylolite formation between 300 to 600 m with corresponding normal stress in the range of 10–18 MPa. Accordingly, the stylolite morphology contains a signature of the stress field during formation and we thus suggest that stylolites could be used as paleo-stress gauges of deformation processes in the upper crust. 相似文献
We report on the petrology of a new eucrite belonging to the Stannern trend and discuss the origin of this trend. The eucrite Northwest Africa 4523 (NWA 4523) is an equilibrated eucrite consisting of dark clasts embedded in a fine-grained crystallized matrix. Two types of clasts have been observed: medium-grained ophitic/subophitic clasts, and very fine-grained clasts. Despite textural differences, the clasts display the same mineralogy, in particular the same kind of pyroxenes with pigeonitic cores containing sparse exsolution lamellae, and augitic rims, zoned plagioclases and the occurrence of K-feldspar. The major and trace element abundances of a large medium-grained clast are very similar to Stannern or Bouvante.The Stannern trend eucrites are characterized by high incompatible trace element abundances. Their trace element patterns normalized to a representative Main Group eucrite, exhibit significant Eu, Sr and Be negative anomalies. In this paper, we show that contamination of Main Group eucritic magmas by melts derived by partial melting of the asteroid’s crust can successfully explain both the high incompatible trace elements concentrations and the distinctive Eu, Sr, Be anomalies shown by the Stannern trend eucrites. This model is in agreement with the view that Stannern and some Main Group-Nuevo Laredo trend eucrites have been contemporaneously erupted, and with the probable assumption that Stannern trend eucrites formed rather late in the history of the 4-Vesta’s crust. 相似文献
The history of variations in water level of Lake Constance, as reconstructed from sediment and pollen analysis of a sediment sequence from the archaeological site of Arbon-Bleiche 3, shows an abrupt rise in lake level dendrochronologically dated to 5375 yr ago (5320 yr relative to AD 1950). This event, paralleled by the destruction of the Neolithic village by fire, provoked the abandonment of this prehistoric lake-shore location established in the former shallow bay of Arbon-Bleiche, and was the last of a series of three episodes of successively higher lake level, the first occurring at 5600-5500 cal yr B.P. The dendrochronologically dated rise event was synchronous with an abrupt increase in atmospheric 14C. This supports the hypothesis of an abrupt climate change forced by varying solar activity. Moreover, the three successive episodes of higher lake level between 5600 and 5300 cal yr B.P. at Arbon-Bleiche 3 coincided with climatic cooling and/or changes in moisture conditions in various regions of both hemispheres. This period corresponds to the mid-Holocene climate transition (onset of the Neoglaciation) and suggests inter-hemispheric linkages for the climate variations recorded at Arbon-Bleiche 3. This mid-Holocene climate reversal may have resulted from complex interactions between changes in orbital forcing, ocean circulation and solar activity. Finally, despite different seasonal hydrological regimes, the similarities between lake-level records from Lake Constance and from Jurassian lakes over the mid-Holocene period point to time scale as a crucial factor in considering the possible impact of climate change on environments. 相似文献
The eastern part of the Guiana Shield, northern Amazonian Craton, in South America, represents a large orogenic belt developed during the Transamazonian orogenic cycle (2.26–1.95 Ga), which consists of extensive areas of Paleoproterozoic crust and two major Archean terranes: the Imataca Block, in Venezuela, and the here defined Amapá Block, in the north of Brazil.
Pb-evaporation on zircon and Sm–Nd on whole rock dating were provided on magmatic and metamorphic units from southwestern Amapá Block, in the Jari Domain, defining its long-lived evolution, marked by several stages of crustal accretion and crustal reworking. Magmatic activity occurred mainly at the Meso-Neoarchean transition (2.80–2.79 Ga) and during the Neoarchean (2.66–2.60 Ga). The main period of crust formation occurred during a protracted episode at the end of Paleoarchean and along the whole Mesoarchean (3.26–2.83 Ga). Conversely, crustal reworking processes have dominated in Neoarchean times. During the Transamazonian orogenic cycle, the main geodynamic processes were related to reworking of older Archean crust, with minor juvenile accretion at about 2.3 Ga, during an early orogenic phase. Transamazonian magmatism consisted of syn- to late-orogenic granitic pulses, which were dated at 2.22 Ga, 2.18 Ga and 2.05–2.03 Ga. Most of the εNd values and TDM model ages (2.52–2.45 Ga) indicate an origin of the Paleoproterozoic granites by mixing of juvenile Paleoproterozoic magmas with Archean components.
The Archean Amapá Block is limited in at southwest by the Carecuru Domain, a granitoid-greenstone terrane that had a geodynamic evolution mainly during the Paleoproterozoic, related to the Transamazonian orogenic cycle. In this latter domain, a widespread calc-alkaline magmatism occurred at 2.19–2.18 Ga and at 2.15–2.14 Ga, and granitic magmatism was dated at 2.10 Ga. Crustal accretion was recognized at about 2.28 Ga, in agreement with the predominantly Rhyacian crust-forming pattern of the eastern Guiana Shield. Nevertheless, TDM model ages (2.50–2.38 Ga), preferentially interpreted as mixed ages, and εNd < 0, point to some participation of Archean components in the source of the Paleoproterozoic rocks. In addition, the Carecuru Domain contains an oval-shaped Archean granulitic nucleus, named Paru Domain. In this domain, Neoarchean magmatism at about 2.60 Ga was produced by reworking of Mesoarchean crust, as registered in the Amapá Block. Crustal accretion events and calc-alkaline magmatism are recognized at 2.32 Ga and at 2.15 Ga, respectively, as well as charnockitic magmatism at 2.07 Ga.
The lithological association and the available isotopic data registered in the Carecuru Domain suggests a geodynamic evolution model based on the development of a magmatic arc system during the Transamazonian orogenic cycle, which was accreted to the southwestern border of the Archean Amapá Block. 相似文献
As in all fields of sample analysis, reference materials play a large role in supporting measurements in the geosciences. While a rather large number of materials are in distribution (> 380), not all are equally effective or fit-for-purpose in supporting laboratory data quality and thereby assuring the desired comparability of measurements between laboratories. Equally important, reference values that are not fit-for-purpose cannot be used effectively to establish traceability links between laboratory measurements and national and international standards. The needed fitness-for-purpose is not achieved for reference values either when more than one reference value has been proposed and a consensus does not exist among users as to which should be used by all, or when reference value uncertainties are too large in comparison to those of routine laboratory measurements. The focus of this review will be, first to outline the current reality, and second to suggest ways in which certifications of RMs can be improved to provide reference values that are universally accepted and more fit-for-purpose in general laboratory use. The discussion will be illustrated largely by current uses of USGS BCR-1, NIST SRM 610 and IAEA NBS28, as these three materials are those for which the largest body of newly published data exists, according to recent bibliographies of the geoanalytical literature published annually in Geostandards Newsletter: The Journal of Geostandards and Geoanalysis. 相似文献