首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4400篇
  免费   1319篇
  国内免费   40篇
测绘学   96篇
大气科学   130篇
地球物理   2336篇
地质学   1896篇
海洋学   289篇
天文学   661篇
综合类   8篇
自然地理   343篇
  2022年   6篇
  2021年   60篇
  2020年   78篇
  2019年   217篇
  2018年   235篇
  2017年   319篇
  2016年   382篇
  2015年   377篇
  2014年   412篇
  2013年   509篇
  2012年   340篇
  2011年   341篇
  2010年   313篇
  2009年   251篇
  2008年   280篇
  2007年   195篇
  2006年   167篇
  2005年   169篇
  2004年   140篇
  2003年   157篇
  2002年   131篇
  2001年   115篇
  2000年   115篇
  1999年   40篇
  1998年   23篇
  1997年   18篇
  1996年   16篇
  1995年   19篇
  1994年   20篇
  1993年   10篇
  1992年   14篇
  1991年   24篇
  1990年   18篇
  1989年   14篇
  1988年   10篇
  1987年   17篇
  1986年   15篇
  1985年   13篇
  1984年   20篇
  1983年   21篇
  1982年   18篇
  1981年   13篇
  1980年   12篇
  1978年   11篇
  1977年   9篇
  1976年   7篇
  1975年   12篇
  1974年   7篇
  1973年   10篇
  1970年   5篇
排序方式: 共有5759条查询结果,搜索用时 156 毫秒
961.
Vibration control systems are being used increasingly worldwide to provide enhanced seismic protection for new and retrofitted buildings. This paper presents a new vibration control system on the basis of a seesaw mechanism with viscoelastic dampers. The proposed vibration control system comprises three parts: brace, seesaw member, and viscoelastic dampers. In this system, only tensile force appears in bracing members. Consequently, the brace buckling problem is negligible, which enables the use of steel rods for bracing members. By introducing pre‐tension in rods, long steel rods are applicable as bracing between the seesaw members and the moment frame connections over some stories. Seesaw mechanisms can magnify the damper deformation according to the damper system configuration. In this paper, first, the magnification factor, that is, the ratio of the damper deformation to the story drift, is delivered, which includes the rod deformation. Results of a case study demonstrate that the magnification factor of the proposed system is greater than unity for some cases. Seismic response analysis is conducted for steel moment frames with the proposed vibration control system. Energy dissipation characteristics are examined using the time‐history response results of energy. The maximum story drift angle distributions and time‐history response results of displacement show that the proposed system can reduce the seismic response of the frames effectively. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
962.
This paper presents the main results of the evaluation of residual inter‐story drift demands in typical moment‐resisting steel buildings designed accordingly to the Mexican design practice when subjected to narrow‐band earthquake ground motions. Analytical 2D‐framed models representative of the study‐case buildings were subjected to a set of 30 narrow‐band earthquake ground motions recorded on stations placed in soft‐soil sites of Mexico City, where most significant structural damage was found in buildings as a consequence of the 1985 Michoacan earthquake, and scaled to reach several levels of intensity to perform incremental dynamic analyses. Thus, results were statistically processed to obtain hazard curves of peak (maximum) and residual drift demands for each frame model. It is shown that the study‐case frames might exhibit maximum residual inter‐story drift demands in excess of 0.5%, which is perceptible for building's occupants and could cause human discomfort, for a mean annual rate of exceedance associated to peak inter‐story drift demands of about 3%, which is the limiting drift to avoid collapse prescribed in the 2004 Mexico City Seismic Design Provisions. The influence of a member's post‐yield stiffness ratio and material overstrength in the evaluation of maximum residual inter‐story drift demands is also discussed. Finally, this study introduces response transformation factors, Tp, that allow establishing residual drift limits compatible with the same mean annual rate of exceedance of peak inter‐story drift limits for future seismic design/evaluation criteria that take into account both drift demands for assessing a building's seismic performance. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
963.
The self‐centering energy dissipative (SCED) brace is a new steel bracing member that provides both damping to the structure and a re‐centering capability. The goal of this study was to confirm the behavior of SCED braces within complete structural systems and to confirm the ability to model these systems with both a state‐of‐the‐art computer model as well as a simplified model that would be useful to practicing engineers. To these ends, a three‐story SCED‐braced frame was designed and constructed for testing on a shake table. Two concurrent computer models of the entire frame were constructed: one using the opensees nonlinear dynamic modeling software, and a simplified model using the commercial structural analysis software sap2000 . The frame specimen was subjected to 12 significant earthquakes without any adjustment or modification between the tests. The SCED braces prevented residual drifts in the frame, as designed, and did not show any significant degradation due to wear. Both numerical models were able to predict the drifts, story shears, and column forces well. Peak story accelerations were overestimated in the models; this effect was found to be caused by the absence of transitions at stiffness changes in the hysteretic model of the braces. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
964.
Special concentrically braced frames (SCBFs) are commonly used for seismic design of buildings. Their large elastic stiffness and strength efficiently sustains the seismic demands during smaller, more frequent earthquakes. During large, infrequent earthquakes, SCBFs exhibit highly nonlinear behavior due to brace buckling and yielding and the inelastic behavior induced by secondary deformation of the framing system. These response modes reduce the system demands relative to an elastic system without supplemental damping using a response modification coefficient, commonly termed the R factor. More recently, procedures put forth in FEMAP695 have been made to quantify the R factor through a formalized procedure that accounts for collapse potential. The primary objective of the research in this paper was to evaluate the approach for SCBFs. An improved model for SCBFs that permits simulation of brace fracture was used to conduct response history analyses. A series of three‐story, nine‐story and 20‐story SCBFs were designed and evaluated. Initially, the FEMAP695 method was conducted to estimate collapse and the corresponding R factor. An alternate procedure for scaling the multiple acceleration records to the seismic design hazard was also evaluated. The results show significant variation between the two methods. Of the three variations of buildings studied, the largest vulnerability was identified for the three‐story building. To achieve a consistent margin of safety against collapse, a significantly lower R factor is required for the low‐rise SCBFs (three‐story), whereas the mid‐rise and high‐rise SCBFs (nine‐story and 20‐story) may continue to use the current value of 6, as provided in ASCE‐07. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
965.
The reconstruction of past flash floods in ungauged basins leads to a high level of uncertainty, which increases if other processes are involved such as the transport of large wood material. An important flash flood occurred in 1997 in Venero Claro (Central Spain), causing significant economic losses. The wood material clogged bridge sections, raising the water level upstream. The aim of this study was to reconstruct this event, analysing the influence of woody debris transport on the flood hazard pattern. Because the reach in question was affected by backwater effects due to bridge clogging, using only high water mark or palaeostage indicators may overestimate discharges, and so other methods are required to estimate peak flows. Therefore, the peak discharge was estimated (123 ± 18 m3 s–1) using indirect methods, but one‐dimensional hydraulic simulation was also used to validate these indirect estimates through an iterative process (127 ± 33 m3 s–1) and reconstruct the bridge obstruction to obtain the blockage ratio during the 1997 event (~48%) and the bridge clogging curves. Rainfall–Runoff modelling with stochastic simulation of different rainfall field configurations also helped to confirm that a peak discharge greater than 150 m3 s–1 is very unlikely to occur and that the estimated discharge range is consistent with the estimated rainfall amount (233 ± 27 mm). It was observed that the backwater effect due to the obstruction (water level ~7 m) made the 1997 flood (~35‐year return period) equivalent to the 50‐year flood. This allowed the equivalent return period to be defined as the recurrence interval of an event of specified magnitude, which, where large woody debris is present, is equivalent in water depth and extent of flooded area to a more extreme event of greater magnitude. These results highlight the need to include obstruction phenomena in flood hazard analysis. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
966.
Historical trends in Florida temperature and precipitation   总被引:1,自引:0,他引:1  
Because of its low topographic relief, unique hydrology, and the large interannual variability of precipitation, Florida is especially vulnerable to climate change. In this paper, we investigate a comprehensive collection of climate metrics to study historical trends in both averages and extremes of precipitation and temperature in the state. The data investigated consist of long‐term records (1892–2008) of precipitation and raw (unadjusted) temperature at 32 stations distributed throughout the state. To evaluate trends in climate metrics, we use an iterative pre‐whitening method, which aims to separate positive autocorrelation from trend present in time series. Results show a general decrease in wet season precipitation, most evident for the month of May and possibly tied to a delayed onset of the wet season. In contrast, there seems to be an increase in the number of wet days during the dry season, especially during November through January. We found that the number of dog days (above 26.7 °C) during the year and during the wet season has increased at many locations. For the post‐1950 period, a widespread decrease in the daily temperature range (DTR) is observed mainly because of increased daily minimum temperature (Tmin). Although we did not attempt to formally attribute these trends to natural versus anthropogenic causes, we find that the urban heat island effect is at least partially responsible for the increase in Tmin and its corresponding decrease in DTR at urbanized stations compared with nearby rural stations. In the future, a formal trend attribution study should be conducted for the region. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
967.
In studies on heavy oil, shale reservoirs, tight gas and enhanced geothermal systems, the use of surface passive seismic data to monitor induced microseismicity due to the fluid flow in the subsurface is becoming more common. However, in most studies passive seismic records contain days and months of data and manually analysing the data can be expensive and inaccurate. Moreover, in the presence of noise, detecting the arrival of weak microseismic events becomes challenging. Hence, the use of an automated, accurate and computationally fast technique for event detection in passive seismic data is essential. The conventional automatic event identification algorithm computes a running‐window energy ratio of the short‐term average to the long‐term average of the passive seismic data for each trace. We show that for the common case of a low signal‐to‐noise ratio in surface passive records, the conventional method is not sufficiently effective at event identification. Here, we extend the conventional algorithm by introducing a technique that is based on the cross‐correlation of the energy ratios computed by the conventional method. With our technique we can measure the similarities amongst the computed energy ratios at different traces. Our approach is successful at improving the detectability of events with a low signal‐to‐noise ratio that are not detectable with the conventional algorithm. Also, our algorithm has the advantage to identify if an event is common to all stations (a regional event) or to a limited number of stations (a local event). We provide examples of applying our technique to synthetic data and a field surface passive data set recorded at a geothermal site.  相似文献   
968.
Sediments produced by landslides are crucial in the sediment yield of a catchment, debris flow forecasting, and related hazard assessment. On a regional scale, however, it is difficult and time consuming to measure the volumes of such sediment. This paper uses a LiDAR‐derived digital terrain model (DTM) taken in 2005 and 2010 (at 2 m resolution) to accurately obtain landslide‐induced sediment volumes that resulted from a single catastrophic typhoon event in a heavily forested mountainous area of Taiwan. The landslides induced by Typhoon Morakot are mapped by comparison of 25 cm resolution aerial photographs taken before and after the typhoon in an 83.6 km2 study area. Each landslide volume is calculated by subtraction of the 2005 DTM from the 2010 DTM, and the scaling relationship between landslide area and its volume are further regressed. The relationship between volume and area are also determined for all the disturbed areas (VL = 0.452AL1.242) and for the crown areas of the landslides (VL = 2.510AL1.206). The uncertainty in estimated volume caused by use of the LiDAR DTMs is discussed, and the error in absolute volume estimation for landslides with an area >105 m2 is within 20%. The volume–area relationship obtained in this study is also validated in 11 small to medium‐sized catchments located outside the study area, and there is good agreement between the calculation from DTMs and the regression formula. By comparison of debris volumes estimated in this study with previous work, it is found that a wider volume variation exists that is directly proportional to the landslide area, especially under a higher scaling exponent. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
969.
Landslides generate enormous volumes of sediment in mountainous watersheds; however, quantifying the downstream transport of landslide‐derived sediment remains a challenge. Landslide erosion and sediment delivery to the Shihmen Reservoir watershed in Taiwan was estimated using empirical landslide frequency–area and volume–area relationships, empirical landslide runout models, and the Hydrological Simulation Program‐ FORTRAN (HSPF). Landslide erosion rates ranged from 0.4 mm yr‐1 to 2.2 mm yr‐1 during the period 1986–2003, but increased to 7.9 mm yr‐1 following Typhoon Aere in 2004. The percentage of landslide sediment delivered to streams decreased from 78% during the period 1986–1997 to 55% in 2004. Although the delivery ratio was lower, the volume of landslide sediment delivered to streams was 2.81 × 106 Mg yr‐1 in 1986–1997 and 8.60 × 106 Mg yr‐1 in 2004. Model simulations indicate that only a small proportion of the landslide material was delivered downstream. An average of 13% of the landslide material delivered to rivers was moved downstream during the period 1986–1997. In 2004, the period including Typhoon Aere, the annual fluvial sediment yield accounted for approximately 23% of the landslide material delivered to streams. In general, the transfer of sediment in the fluvial system in the Shihmen Reservoir watershed is dominantly transport limited. The imbalance between sediment supply and transport capacity has resulted in a considerable quantity of landslide material remaining in the upper‐stream regions of the watershed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
970.
The purpose of this study was to quantify relationships between season, sediment availability, sediment transport pathways, and beach/foredune morphology at Greenwich Dunes, PEI. This was done for periods ranging from a few days to multiple decades using erosion pins, bedframe measurements, annual surveys, and digital photogrammetry using historical aerial photographs. The relative significance of seasonal/annual processes versus response of the foredune system to broader geomorphic controls (e.g. relative sea level rise, storms, etc.) was also assessed. The data show that there are clear seasonal differences in the patterns of sand supply from the beach to the foredune at Greenwich and that there are differences in sediment supply to the foredune between the east and west reaches of the study area, resulting in ongoing differences in foredune morphology. They also demonstrate that models that incorporate wind climate alone, or even models that include other factors like beach moisture, would not be able to predict the amount of sediment movement from the beach to the foredune in this environment unless there were some way to parameterize system morphology, especially the presence or absence of a dune ramp. Finally, the data suggest that the foredune can migrate landward while maintaining its form via transfers of sediment from the stoss slope, over the crest, and onto the lee slope. Although the rate of foredune development or recovery after disturbance changes over time due to morphological feedback, the overall decadal evolution of the foredune system at Greenwich is consistent with, and supports, the Davidson‐Arnott (2005) conceptual model of dune transgression under rising sea level. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号