首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   621篇
  免费   55篇
  国内免费   13篇
测绘学   21篇
大气科学   100篇
地球物理   157篇
地质学   199篇
海洋学   50篇
天文学   95篇
综合类   2篇
自然地理   65篇
  2024年   1篇
  2022年   5篇
  2021年   22篇
  2020年   19篇
  2019年   16篇
  2018年   20篇
  2017年   25篇
  2016年   54篇
  2015年   31篇
  2014年   30篇
  2013年   47篇
  2012年   52篇
  2011年   40篇
  2010年   42篇
  2009年   51篇
  2008年   38篇
  2007年   30篇
  2006年   34篇
  2005年   27篇
  2004年   19篇
  2003年   14篇
  2002年   6篇
  2001年   13篇
  2000年   13篇
  1999年   7篇
  1998年   7篇
  1997年   7篇
  1996年   3篇
  1994年   2篇
  1993年   2篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有689条查询结果,搜索用时 0 毫秒
61.
Erosion rates are key to quantifying the timescales over which different topographic and geomorphic domains develop in mountain landscapes. Geomorphic and terrestrial cosmogenic nuclide (TCN) methods were used to determine erosion rates of the arid, tectonically quiescent Ladakh Range, northern India. Five different geomorphic domains are identified and erosion rates are determined for three of the domains using TCN 10Be concentrations. Along the range divide between 5600 and 5700 m above sea level (asl), bedrock tors in the periglacial domain are eroding at 5.0 ± 0.5 to 13.1 ± 1.2 meters per million years (m/m.y.)., principally by frost shattering. At lower elevation in the unglaciated domain, erosion rates for tributary catchments vary between 0.8 ± 0.1 and 2.0 ± 0.3 m/m.y. Bedrock along interfluvial ridge crests between 3900 and 5100 m asl that separate these tributary catchments yield erosion rates <0.7 ± 0.1 m/m.y. and the dominant form of bedrock erosion is chemical weathering and grusification. Erosion rates are fastest where glaciers conditioned hillslopes above 5100 m asl by over‐steepening slopes and glacial debris is being evacuated by the fluvial network. For range divide tors, the long‐term duration of the erosion rate is considered to be 40–120 ky. By evaluating measured 10Be concentrations in tors along a model 10Be production curve, an average of ~24 cm is lost instantaneously every ~40 ky. Small (<4 km2) unglaciated tributary catchments and their interfluve bedrock have received very little precipitation since ~300 ka and the long‐term duration of their erosion rates is 300–750 ky and >850 ky, respectively. These results highlight the persistence of very slow erosion in different geomorphic domains across the southwestern slope of the Ladakh Range, which on the scale of the orogen records spatial changes in the locus of deformation and the development of an orogenic rain shadow north of the Greater Himalaya. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
62.
There is a need for research that advances understanding of flow alterations in contemporary watersheds where natural and anthropogenic interactions can confound mitigation efforts. Event-based flow frequency, timing, magnitude, and rate of change were quantified at five-site nested gauging sites in a representative mixed-land-use watershed of the central USA. Statistically independent storms were paired by site (n = 111 × 5 sites) to test for significant differences in event-based rainfall and flow response variables (n = 17) between gauging sites. Increased frequency of small peak flow events (i.e., 64 more events less than 4.0 m3 s?1) was observed at the rural–urban interface of the watershed. Differences in flow response were apparent during drier periods when small rainfall events resulted in increased flow response at urban sites in the lower reaches. Relationships between rainfall and peak flow were stronger with decreased pasture/crop land use and increased urban land use by approximately 20%. Event-based total rainfall explained 40–68% of the variance in peak flow (p < 0.001). Coefficients of determination (r2) were negatively correlated with pasture/crop land use (r2 = 0.92; p = 0.007; n = 5) and positively correlated with urban land use (r2 = 0.90; p = 0.008; n = 5). Significant differences in flow metrics were observed between rural and urban sites (p < 0.05; n = 111) that were not explained by differences in rainfall variables and drainage area. An urban influence on flow timing was observed using median time lag to peak centroid and time of maximum precipitation to peak flow. Results highlight the need to establish manageable flow targets in rapidly urbanizing mixed-land-use watersheds.  相似文献   
63.
64.
For energetic reasons, iron reduction suppresses methanogenesis in tidal freshwater wetlands; however, when iron reduction is limited by iron oxide availability, methanogenesis dominates anaerobic carbon mineralization. Plants can mediate this microbial competition by releasing oxygen into the rhizosphere and supplying oxidized iron for iron reducers. We utilized a plant removal experiment in two wetland sites to test the hypothesis that, in the absence of plants, rates of iron reduction would be diminished, allowing methanogenesis to dominate anaerobic metabolism. In both sites, methanogenesis was the primary anaerobic mineralization pathway, with iron reduction dominating only early and late in the growing season in the site with a less organic soil. These patterns were not influenced by the presence of plants, demonstrating that plants were not a key control of microbial metabolism. Instead, we suggest that site conditions, including soil chemistry, and temperature are important controls of the pathways of anaerobic metabolism.  相似文献   
65.
66.
Rocheta  Eytan  Evans  Jason P.  Sharma  Ashish 《Climate Dynamics》2020,55(9-10):2511-2521
Climate Dynamics - Regional climate models (RCM) are an important tool for simulating atmospheric information at finer resolutions often of greater relevance to local scale climate change impact...  相似文献   
67.
Two-point correlations of the fluctuating streamwise velocity are examined in the atmospheric surface layer over the salt flats of Utah’s western desert, and corresponding structure inclination angles are obtained for neutral, stable and unstable conditions. The neutral surface-layer results supplement evidence for the invariance of the inclination angle given in Marusic and Heuer (Phys Rev Lett 99:114504, 2007). In an extension of those results it is found that the inclination angle changes drastically under different stability conditions in the surface layer, varying systematically with the Monin–Obukhov stability parameter in the unstable regime. The variation is parametrized and subsequently can be used to improve existing near-wall models in the large-eddy simulation of the atmospheric surface layer.  相似文献   
68.
We determined the abundances and enantiomeric compositions of amino acids in Sutter's Mill fragment #2 (designated SM2) recovered prior to heavy rains that fell April 25–26, 2012, and two other meteorite fragments, SM12 and SM51, that were recovered postrain. We also determined the abundance, enantiomeric, and isotopic compositions of amino acids in soil from the recovery site of fragment SM51. The three meteorite stones experienced terrestrial amino acid contamination, as evidenced by the low d/l ratios of several proteinogenic amino acids. The d/l ratios were higher in SM2 than in SM12 and SM51, consistent with rain introducing additional l‐ amino acid contaminants to SM12 and SM51. Higher percentages of glycine, β‐alanine, and γ‐amino‐n‐butyric acid were observed in free form in SM2 and SM51 compared with the soil, suggesting that these free amino acids may be indigenous. Trace levels of d +l‐ β‐aminoisobutyric acid (β‐AIB) observed in all three meteorites are not easily explained as terrestrial contamination, as β‐AIB is rare on Earth and was not detected in the soil. Bulk carbon and nitrogen and isotopic ratios of the SM samples and the soil also indicate terrestrial contamination, as does compound‐specific isotopic analysis of the amino acids in the soil. The amino acid abundances in SM2, the most pristine SM meteorite analyzed here, are approximately 20‐fold lower than in the Murchison CM2 carbonaceous chondrite. This may be due to thermal metamorphism in the Sutter's Mill parent body at temperatures greater than observed for other aqueously altered CM2 meteorites.  相似文献   
69.
Mixing dissolution, a process whereby mixtures of two waters with different chemical compositions drive undersaturation with respect to carbonate minerals, is commonly considered to form cavernous macroporosity (e.g. flank margin caves and banana holes) in eogenetic karst aquifers. On small islands, macroporosity commonly originates when focused dissolution forms globular chambers lacking entrances to the surface, suggesting that dissolution processes are decoupled from surface hydrology. Mixing dissolution has been thought to be the primary dissolution process because meteoric water would equilibrate rapidly with calcium carbonate as it infiltrates through matrix porosity and because pCO2 was assumed to be homogeneously distributed within the phreatic zone. Here, we report data from two abandoned well fields in an eogenetic karst aquifer on San Salvador Island, Bahamas, that demonstrate pCO2 in the phreatic zone is distributed heterogeneously. The pCO2 varied from less than log ?2.0 to more than log ?1.0 atm over distances of less than 30 m, generating dissolution in the subsurface where water flows from regions of low to high pCO2 and cementation where water flows from regions of high to low pCO2. Using simple geochemical models, we show dissolution caused by heterogeneously distributed pCO2 can dissolve 2.5 to 10 times more calcite than the maximum amount possible by mixing of freshwater and seawater. Dissolution resulting from spatial variability in pCO2 forms isolated, globular chambers lacking initial entrances to the surface, a morphology that is characteristic of flank margin caves and banana holes, both of which have entrances that form by erosion or collapse after cave formation. Our results indicate that heterogeneous pCO2, rather than mixing dissolution, may be the dominant mechanism for observed spatial distribution of dissolution, cementation and macroporosity generation in eogenetic karst aquifers and for landscape development in these settings. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
70.
Existing research on DEM vertical accuracy assessment uses mainly statistical methods, in particular variance and RMSE which are both based on the error propagation theory in statistics. This article demonstrates that error propagation theory is not applicable because the critical assumption behind it cannot be satisfied. In fact, the non‐random, non‐normal, and non‐stationary nature of DEM error makes it very challenging to apply statistical methods. This article presents approximation theory as a new methodology and illustrates its application to DEMs created by linear interpolation using contour lines as the source data. Applying approximation theory, a DEM's accuracy is determined by the largest error of any point (not samples) in the entire study area. The error at a point is bounded by max(|δnode|+M2h2/8) where |δnode| is the error in the source data used to interpolate the point, M2 is the maximum norm of the second‐order derivative which can be interpreted as curvature, and h is the length of the line on which linear interpolation is conducted. The article explains how to compute each term and illustrates how this new methodology based on approximation theory effectively facilitates DEM accuracy assessment and quality control.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号