首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   688篇
  免费   58篇
  国内免费   13篇
测绘学   22篇
大气科学   103篇
地球物理   168篇
地质学   233篇
海洋学   50篇
天文学   105篇
综合类   1篇
自然地理   77篇
  2022年   5篇
  2021年   22篇
  2020年   21篇
  2019年   17篇
  2018年   22篇
  2017年   25篇
  2016年   56篇
  2015年   32篇
  2014年   33篇
  2013年   46篇
  2012年   56篇
  2011年   40篇
  2010年   45篇
  2009年   58篇
  2008年   40篇
  2007年   30篇
  2006年   37篇
  2005年   29篇
  2004年   19篇
  2003年   16篇
  2002年   8篇
  2001年   14篇
  2000年   14篇
  1999年   7篇
  1998年   8篇
  1997年   7篇
  1996年   4篇
  1995年   1篇
  1994年   4篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1984年   7篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1980年   3篇
  1979年   2篇
  1978年   3篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   2篇
  1971年   2篇
排序方式: 共有759条查询结果,搜索用时 125 毫秒
751.
Contemporary real-time instruments that advance suspended sediment monitoring capabilities often provide results in units (e.g. volumetric) that are not easily comparable to traditional mass (e.g. gravimetric) methods. A Midwest case study was initiated to assess the accuracy of three methods commonly used to convert volumetric data to mass. Water samples from rural, suburban, and urban stream reaches were analyzed for suspended sediment concentration using laser diffraction and wet sieving methods, resulting in paired volumetric (μl/l) and mass (mg/l) suspended sediment concentrations. Observed volumetric data were converted to mass using an assumed particle density (Pd) of 2.65 g/cm3, a calculated Pd, and linear regression. Using the assumed Pd, estimated mass data differed from observed mass data by as much as 60 %. Dividing mass concentration (mg/l) by the volumetric concentration (μl/l) resulted in site-specific average suspended sediment particle densities ranging from 2.17, 1.99, 1.76 g/cm3 for different land use types. Using a calculated Pd, estimated mass data differed from observed mass data by as much as 45 %. Paired sample t tests showed observed and estimated mass values to be significantly different (p < 0.01). R 2 values for regression equations ranged from 0.82 to 0.88. Conversion difficulties likely result from temporal and spatial variations of Pd. The results illustrate the imprecision of conversion methods and highlight possible estimation errors assuming idealized conditions. Continued work is necessary to improve quantitative relationship(s) between mass and volumetric suspended sediment data and the utility of both types of information for science and land management practices.  相似文献   
752.
A large, circular marking ∼1800 km across is seen in near-infrared images of Titan. The feature is centered at 10°S, 120°W on Titan, encompasses much of Titan’s western Xanadu region, and has an off-center, quasi-circular, inner margin about 700 km across, with lobate outer margins extending 200-500 km from the inner margin. On the feature’s southern flank is Tui Regio, an area that has very high reflectivity at 5 μm, and is hypothesized to exhibit geologically recent cryovolcanic flows (Barnes, J.W. et al. [2006]. Geophys. Res. Lett. 33), similar to flows seen in Hotei Regio, a cryovolcanic area whose morphology may be controlled by pre-existing, crustal fractures resulting from an ancient impact (Soderblom, L.A. et al. [2009]. Icarus, 204). The spectral reflectivity of the large, circular feature is quite different than that of its surroundings, making it compositionally distinct, and radar measurements of its topography, brightness temperature and volume scattering also suggest that the feature is quite distinct from its surroundings. These and several other lines of evidence, in addition to the feature’s morphology, suggest that it may occupy the site of an ancient impact.  相似文献   
753.
Radiometric constraints on mid-Ediacaran Period glaciation (Gaskiers) in Newfoundland narrowed the known temporal gap between widespread ice ages and the evolution of complex metazoans to several million years. To further evaluate this claim we studied an Ediacaran glacial diamictite at the base of the Fauquier Formation of northern Virginia, and discovered a conformable relationship between the post-glacial cap carbonate and overlying volcanic rocks of the Catoctin Formation. U/Pb zircon age constraints for the rift-related volcanic flows suggest initial emplacement around 571 million years ago. Application of the Catoctin age to the Fauquier succession indicates the occurrence of an ice age about 10 million years younger than the 582 Ma Gaskiers event, supporting the view of multiple Ediacaran Period glaciations. Furthermore, the age constraint from eastern Laurentia falls within radiometric uncertainty of fossiliferous strata in Avalonia, indicating that the Fauquier glaciation was coincident with early metazoan evolution.  相似文献   
754.
Surface water optical characteristics, nutrients, and planktonic chlorophyll a concentrations were analyzed in the Cape Fear River (CFR) plume over a 2-year period. CFR discharge during the dry year (109 ± 105 m3s−1) was only 25% of the wet year discharge (429 ± 337 m3s−1). Partitioning the contributions of phytoplankton pigments, non-pigmented particles, and colored dissolved organic matter (CDOM) to the absorption of photosynthetically active radiation (PAR) indicated that CDOM was the dominant contributor to PAR absorption. Particulate absorption was relatively greater during the dry year. Pigment absorption was minor and varied little among stations or between years. Chlorophyll a concentrations were reduced at the most plume-influenced stations during the wet year, despite lower turbidity and higher nitrate concentrations. Ammonium and orthophosphate concentrations were not different between years. CDOM absorption [a CDOM (412)] ranged from 0.05 to 8.25 m−1 with highest values occurring near the CFR mouth. Our results suggest that for coastal ecosystems with significant blackwater river inputs, CDOM may exert a major limiting influence over near-shore primary production.  相似文献   
755.
Lake Lochloosa, Florida (USA) recently underwent a shift from macrophyte to phytoplankton dominance, offering us the opportunity to use a whole-basin, mass-balance approach to investigate the influence of phosphorus loading on ecosystem change in a shallow, sub-tropical lake. We analyzed total phosphorus (TP) sedimentation in the basin to improve our understanding of the forcing factor responsible for the recent shift to phytoplankton dominance. We measured 210Pb activity, organic matter (OM), organic carbon (OC) and TP in short sediment cores from 20 locations to develop a comprehensive, whole-basin estimate of recent mass sedimentation rates (MSR) for bulk sediment, OM, OC and TP. The whole-basin sedimentation models provided insights into historic lake processes that were not evident from the limited, historic water quality data. We used Akaike’s Information Criteria to differentiate statistically between constant MSR and exponentially increasing MSR. An eightfold, exponential increase in TP accumulation over the past century provided evidence for the critical role of increased P loading as a forcing factor in the recent shift to phytoplankton dominance. Model results show increased TP retention and decreased TP residence time were in-lake responses to increased TP loading and the shift from macrophyte to phytoplankton dominance in Lake Lochloosa. Comparison of TP loading with TP retention and historic, diatom-inferred limnetic TP concentrations identified the TP loading threshold that was exceeded to trigger the shift to phytoplankton dominance.  相似文献   
756.
A fast simple climate modelling approach is developed for predicting and helping to understand general circulation model (GCM) simulations. We show that the simple model reproduces the GCM results accurately, for global mean surface air temperature change and global-mean heat uptake projections from 9 GCMs in the fifth coupled model inter-comparison project (CMIP5). This implies that understanding gained from idealised CO2 step experiments is applicable to policy-relevant scenario projections. Our approach is conceptually simple. It works by using the climate response to a CO2 step change taken directly from a GCM experiment. With radiative forcing from non-CO2 constituents obtained by adapting the Forster and Taylor method, we use our method to estimate results for CMIP5 representative concentration pathway (RCP) experiments for cases not run by the GCMs. We estimate differences between pairs of RCPs rather than RCP anomalies relative to the pre-industrial state. This gives better results because it makes greater use of available GCM projections. The GCMs exhibit differences in radiative forcing, which we incorporate in the simple model. We analyse the thus-completed ensemble of RCP projections. The ensemble mean changes between 1986–2005 and 2080–2099 for global temperature (heat uptake) are, for RCP8.5: 3.8 K (2.3 × 1024 J); for RCP6.0: 2.3 K (1.6 × 1024 J); for RCP4.5: 2.0 K (1.6 × 1024 J); for RCP2.6: 1.1 K (1.3 × 1024 J). The relative spread (standard deviation/ensemble mean) for these scenarios is around 0.2 and 0.15 for temperature and heat uptake respectively. We quantify the relative effect of mitigation action, through reduced emissions, via the time-dependent ratios (change in RCPx)/(change in RCP8.5), using changes with respect to pre-industrial conditions. We find that the effects of mitigation on global-mean temperature change and heat uptake are very similar across these different GCMs.  相似文献   
757.
758.
Concentration variability in the fast-response tracer dataset for continuous, near-surface, point source releases in the urban core from the Joint Urban 2003 field study is analyzed. Concentration variability for conditionally and unconditionally sampled time series is characterized by probability densities, concentration fluctuation intensity, skewness, and kurtosis. Significant day-night differences in plume dispersion are observed. Relative to daytime, nighttime plumes were more likely to have reduced concentration fluctuation intensities, higher normalized surface concentrations, suppressed vertical mixing, and a greater prevalence of Gaussian-like distributions rather than log-normal or mixed mode distributions. This was in spite of the similar stability and turbulence conditions in the urban core for day and night. The potential roles of flow meander and thermal stability in explaining these differences are examined. Probability densities of concentration are found to be a strong function of fluctuation intensity. There are few differences in probability densities between day and night when classified by fluctuation intensity. There are no appreciable differences between conditional and unconditional probability densities and only small differences between conditional and unconditional sampling statistics relative to the larger differences usually observed in more homogeneous settings. Fluctuation intensity, skewness, and kurtosis are higher for the daytime experiments, and closer to the source, but show little difference between conditional and unconditional results over most of their range of values. The log-normal distribution provides a better overall fit to a broader range of the dataset than the exponential or clipped-normal distributions.  相似文献   
759.
We present evidence for a thick (∼100 km) sequence of cogenetic rocks which make up the root of the Sierra Nevada batholith of California. The Sierran magmatism produced tonalitic and granodioritic magmas which reside in the Sierra Nevada upper- to mid-crust, as well as deep eclogite facies crust/upper mantle mafic–ultramafic cumulates. Samples of the mafic–ultramafic sequence are preserved as xenoliths in Miocene volcanic rocks which erupted through the central part of the batholith. We have performed Rb-Sr and Sm-Nd mineral geochronologic analyses on seven fresh, cumulate textured, olivine-free mafic–ultramafic xenoliths with large grainsize, one garnet peridotite, and one high pressure metasedimentary rock. The garnet peridotite, which equilibrated at ∼130 km beneath the batholith, yields a Miocene (10 Ma) Nd age, indicating that in this sample, the Nd isotopes were maintained in equilibrium up to the time of entrainment. All other samples equilibrated between ∼35 and 100 km beneath the batholith and yield Sm-Nd mineral ages between 80 and 120 Ma, broadly coincident with the previously established period of most voluminous batholithic magmatism in the Sierra Nevada. The Rb-Sr ages are generally consistent with the Sm-Nd ages, but are more scattered. The 87Sr/86Sr and 143Nd/144Nd intercepts of the igneous-textured xenoliths are similar to the ratios published for rocks outcroping in the central Sierra Nevada. We interpret the mafic/ultramafic xenoliths to be magmatically related to the upper- and mid-crustal granitoids as cumulates and/or restites. This more complete view of the vertical dimension in a batholith indicates that there is a large mass of mafic–ultramafic rocks at depth which complement the granitic batholiths, as predicted by mass balance calculations and experimental studies. The Sierran magmatism was a large scale process responsible for segregating a column of ∼30 km thick granitoids from at least ∼70 km of mainly olivine free mafic–ultramafic residues/cumulates. These rocks have resided under the batholith as granulite and eclogite facies rocks for at least 70 million years. The presence of this thick mafic–ultramafic keel also calls into question the existence of a “flat” (i.e., shallowly subducted) slab at Central California latitudes during Late Cretaceous–Early Cenozoic, in contrast to the southernmost Sierra Nevada and Mojave regions. Received: 27 December 1997 / Accepted: 11 June 1998  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号