全文获取类型
收费全文 | 9168篇 |
免费 | 316篇 |
国内免费 | 141篇 |
专业分类
测绘学 | 184篇 |
大气科学 | 808篇 |
地球物理 | 2147篇 |
地质学 | 3206篇 |
海洋学 | 844篇 |
天文学 | 1313篇 |
综合类 | 38篇 |
自然地理 | 1085篇 |
出版年
2022年 | 38篇 |
2021年 | 136篇 |
2020年 | 169篇 |
2019年 | 170篇 |
2018年 | 224篇 |
2017年 | 219篇 |
2016年 | 289篇 |
2015年 | 230篇 |
2014年 | 286篇 |
2013年 | 516篇 |
2012年 | 332篇 |
2011年 | 442篇 |
2010年 | 413篇 |
2009年 | 519篇 |
2008年 | 428篇 |
2007年 | 437篇 |
2006年 | 368篇 |
2005年 | 317篇 |
2004年 | 298篇 |
2003年 | 311篇 |
2002年 | 244篇 |
2001年 | 212篇 |
2000年 | 232篇 |
1999年 | 168篇 |
1998年 | 156篇 |
1997年 | 139篇 |
1996年 | 148篇 |
1995年 | 131篇 |
1994年 | 127篇 |
1993年 | 103篇 |
1992年 | 101篇 |
1991年 | 68篇 |
1990年 | 98篇 |
1989年 | 80篇 |
1988年 | 84篇 |
1987年 | 95篇 |
1986年 | 85篇 |
1985年 | 111篇 |
1984年 | 133篇 |
1983年 | 123篇 |
1982年 | 105篇 |
1981年 | 78篇 |
1980年 | 58篇 |
1979年 | 71篇 |
1978年 | 68篇 |
1977年 | 61篇 |
1976年 | 62篇 |
1975年 | 69篇 |
1974年 | 55篇 |
1973年 | 69篇 |
排序方式: 共有9625条查询结果,搜索用时 15 毫秒
21.
Existing research on DEM vertical accuracy assessment uses mainly statistical methods, in particular variance and RMSE which are both based on the error propagation theory in statistics. This article demonstrates that error propagation theory is not applicable because the critical assumption behind it cannot be satisfied. In fact, the non‐random, non‐normal, and non‐stationary nature of DEM error makes it very challenging to apply statistical methods. This article presents approximation theory as a new methodology and illustrates its application to DEMs created by linear interpolation using contour lines as the source data. Applying approximation theory, a DEM's accuracy is determined by the largest error of any point (not samples) in the entire study area. The error at a point is bounded by max(|δnode|+M2h2/8) where |δnode| is the error in the source data used to interpolate the point, M2 is the maximum norm of the second‐order derivative which can be interpreted as curvature, and h is the length of the line on which linear interpolation is conducted. The article explains how to compute each term and illustrates how this new methodology based on approximation theory effectively facilitates DEM accuracy assessment and quality control. 相似文献
22.
Kelsey E. MacCormack Jason J. Brodeur Carolyn H. Eyles 《Journal of Geographical Systems》2013,15(1):71-88
Testing the accuracy of 3D modelling algorithms used for geological applications is extremely difficult as model results cannot be easily validated. This paper presents a new approach to evaluate the effectiveness of common interpolation algorithms used in 3D subsurface modelling, utilizing four synthetic grids to represent subsurface environments of varying geological complexity. The four grids are modelled with Inverse Distance Weighting and Ordinary Kriging, using data extracted from the synthetic grids in different spatial distribution patterns (regular, random, clustered and sparse), and with different numbers of data points (100, 256, 676 and 1,600). Utilizing synthetic grids for this evaluation allows quantitative statistical assessment of the accuracy of both interpolation algorithms in a variety of sampling conditions. Data distribution proved to be an important factor; as in many geological situations, relatively small numbers of randomly distributed data points can generate more accurate 3D models than larger amounts of clustered data. This study provides insight for optimizing the quantity and distribution of data required to accurately and cost-effectively interpolate subsurface units of varying complexity. 相似文献
23.
David Ray Abernathy 《Transactions in GIS》2023,27(5):1467-1478
Open-source software and open data are becoming increasingly popular in the teaching and learning of geographic information science. The cost savings that are derived from using free software over proprietary software are one driving factor, yet the move from “closed” to “open” represents much more than financial austerity—it signifies a broader shift in educational philosophy. This article documents the gradual transition of an introductory undergraduate course in geographic information systems from an entirely closed course to one that has become increasingly open. Having completely adopted the first three layers of open—software, data, and educational resources—the course is now turning toward the next layer: embracing the philosophy of open pedagogy. 相似文献
24.
Sean P Healey Jock A Blackard Todd A Morgan Dan Loeffler Greg Jones Jon Songster Jason P Brandt Gretchen G Moisen Larry T DeBlander 《Carbon balance and management》2009,4(1):9
Background
Although significant amounts of carbon may be stored in harvested wood products, the extraction of that carbon from the forest generally entails combustion of fossil fuels. The transport of timber from the forest to primary milling facilities may in particular create emissions that reduce the net sequestration value of product carbon storage. However, attempts to quantify the effects of transport on the net effects of forest management typically use relatively sparse survey data to determine transportation emission factors. We developed an approach for systematically determining transport emissions using: 1) -remotely sensed maps to estimate the spatial distribution of harvests, and 2) - industry data to determine landscape-level harvest volumes as well as the location and processing totals of individual mills. These data support spatial network analysis that can produce estimates of fossil carbon released in timber transport. 相似文献25.
In this paper, we compare and contrast a Bayesian spatially varying coefficient process (SVCP) model with a geographically
weighted regression (GWR) model for the estimation of the potentially spatially varying regression effects of alcohol outlets
and illegal drug activity on violent crime in Houston, Texas. In addition, we focus on the inherent coefficient shrinkage
properties of the Bayesian SVCP model as a way to address increased coefficient variance that follows from collinearity in
GWR models. We outline the advantages of the Bayesian model in terms of reducing inflated coefficient variance, enhanced model
flexibility, and more formal measuring of model uncertainty for prediction. We find spatially varying effects for alcohol
outlets and drug violations, but the amount of variation depends on the type of model used. For the Bayesian model, this variation
is controllable through the amount of prior influence placed on the variance of the coefficients. For example, the spatial
pattern of coefficients is similar for the GWR and Bayesian models when a relatively large prior variance is used in the Bayesian
model.
相似文献
26.
Kamlesh P. Lulla Michael R. Helfert David L. Amsbury Victor S. Whitehead Cynthia A. Evans M. Justin Wilkinson 《国际地球制图》2013,28(1):69-80
Abstract Multi‐temporal ERS‐1 SAR data acquired over a large agricultural region in West Bengal was used to classify kharif crops like rice, jute and sugarcane. Rice crop grown under lowland management practice showed a temporal characteristic. The dynamic range of backscatter was highest for this crop in temporal SAR data. This was used to classify rice using temporal SAR data. Such temporal character was not observed for the other study crops, which may be due to the difference in cultivation practice and crop calendar. Significant increase in backscatter from the ploughed fields was used to derive information on onset and duration of land preparations. Synergistic use of optical remote sensing data and SAR data increased the separability of rice crop from homesteads and permanent vegetation classes. 相似文献
27.
Xiaodong Zhang Ho Jin Kim Clinton Streeter David A. Claypool Ramesh Sivanpillai Santhosh Seelan 《国际地球制图》2013,28(7):537-551
Precision agriculture often relies on high-resolution imagery to delineate the variability within a field. Airborne Environmental Research Observational Camera (AEROCam) was designed to meet the needs of agriculture producers, ranchers, and researchers, who require high-resolution imagery in a near real-time environment for rapid decision support. AEROCam was developed and operated through a unique collaboration between several departments at the University of North Dakota, including the Upper Midwest Aerospace Consortium (UMAC), the School of Engineering and Mines, and flight operations at the John D. Odegard School of Aerospace Sciences. AEROCam consists of a Redlake MS4100 area-scan multi-spectral digital camera that features a 1920 × 1080 CCD array (7.4-μm detector) with 8-bit quantization. When operated at ~2 km above ground level, multispectral images with four bands in the visible and near infrared have a ground sample distance of 1 m with a horizontal extent of just over 1.6 km. Depending on the applications, flying at different altitudes can adjust the spatial resolution from 0.25 to 2 m. Rigorous spectral and radiometric calibrations allow AEROCam to be used in a variety of applications, qualitative and quantitative. Equipped with an inertial measurement unit (IMU) system, the images acquired can be geo-referenced automatically and delivered to end users near real time through our Digital Northern Great Plains system (DNGP). The images are also available to zone mapping application for precision farming (ZoneMAP), an online decision support tool for creating management zones from remote sensing imagery and data from other sources. Operational since 2004, AEROCam has flown over 250 sorties and delivered over 150,000 images to the users in the Northern Great Plains region, resulting in numerous applications in precision agriculture and resource management. 相似文献
28.
Accessibility Futures 总被引:1,自引:0,他引:1
This study uses accessibility as a performance measure to evaluate a matrix of future land use and network scenarios for planning purposes. The concept of accessibility dates to the 1950s, but this type of application to transportation planning is new. Previous research has established the coevolution of transportation and land use, demonstrated the dependence of accessibility on both, and made the case for the use of accessibility measures as a planning tool. This study builds off of these findings by demonstrating the use of accessibility‐based performance measures in the Twin Cities Metropolitan Area. This choice of performance measure also allows for transit and highway networks to be compared side‐by‐side. For roadway modeling, zone‐to‐zone travel time matrix was computed using stochastic user equilibrium (SUE) assignment with travel time feedback to trip distribution. A database of schedules was used on the transit networks to assign transit routes. This travel time data was joined with the land use data from each scenario to obtain the employment, population, and labor accessibility from each traffic analysis zone (TAZ) within specified time ranges. Tables of person‐weighted accessibility were computed for 20 minutes with zone population as the weight for employment accessibility and zone employment as the weight for population and labor accessibility. Maps of accessibility by zone were produced to show the spatial distribution of accessibility across the region. The results show that a scenario where population and employment growth are concentrated in the center of the metropolitan area would produce the highest accessibility no matter which transportation network changes are made. However, another scenario which concentrates population growth in the center of the metropolitan area and shifts employment growth to the periphery consistently outperforms the scenario representing the projected 2030 land use without any growth management strategy. 相似文献
29.
The estimation of total evaporation is fundamental for water accounting, considering its influence on water availability. Moreover, the current increase in water consumption (e.g. in sub-Saharan Africa and the world over), land cover/use changes, deteriorating water quality and the climate change projections in most regions of the world underscore the need to understand water loss. So far, different approaches have been developed and implemented in estimating the variations of total evaporation, with varying accuracies. The aim of this work was therefore, to provide a review of these different approaches for estimating total evaporation, as well as a detailed discussion of their strengths and weaknesses. Findings from this review have shown that total evaporation estimates derived, using ground-based meteorological and micro-meteorological methods are inadequate for representing its large-scale spatial variations. On the other hand, remote sensing technology, which acquires data at different resolutions (i.e. radiometric, spectral, spatial and temporal), provides timely, up-to-date and relatively accurate spatial estimates of total evaporation over large geographic coverage, for sustainable and effective water accounting, which is key for well-informed and improved management of water resources at both catchment and regional scales. In this regard, more details on the remote sensing-based methods of estimating total evaporation are provided, especially considering the robust technological advancements and its potential in characterizing earth features over time and space. This work has also managed to identify research gaps and challenges in the accurate estimation of total evaporation, using remote sensing, especially with the emergence of more advanced sensors and the characteristics of the landscape. 相似文献
30.
Engineering projects that require deformation monitoring frequently utilize geodetic sensors to measure displacements of target
points located in the deformation zone. In situations where control stations and targets are separated by a kilometer or more,
GPS can offer higher precision position updates at more frequent intervals than can normally be achieved using total station
technology. For large-scale deformation projects requiring the highest precision, it is therefore advisable to use a combination
of the two sensors. In response to the need for high precision, continuous GPS position updates in harsh deformation monitoring
environments, a software has been developed that employs triple-differenced carrier-phase measurements in a delayed-state
Kalman filter. Two data sets were analyzed to test the capabilities of the software. In the first test, a GPS antenna was
displaced using a translation stage to mimic slow deformation. In the second test, data collected at a large open pit mine
were processed. It was shown that the delayed-state Kalman filter developed could detect millimeter-level displacements of
a GPS antenna. The actual precision attained depends upon the amount of process noise infused at each epoch to accommodate
the antenna displacements. Higher process noise values result in quicker detection times, but at the same time increase the
noise in the solutions. A slow, 25 mm displacement was detected within 30 min of the full displacement with sigma values in
E, N and U of ±10 mm or better. The same displacement could also be detected in less than 5 h with sigma values in E, N and U of ±5 mm or better. The software works best for detecting long period deformations (e.g., 20 mm per day or less) for which
sigma values of 1–2 mm are attained in all three solution components. It was also shown that the triple-differenced carrier-phase
observation can be used to significantly reduce the effects of residual tropospheric delay that would normally plague double-differenced
observations in harsh GPS environments.
相似文献
Don KimEmail: |