首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
地球物理   3篇
地质学   9篇
海洋学   1篇
自然地理   1篇
  2022年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2014年   1篇
  2013年   1篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
11.
Laminated limestone and calcareous shale outcrop samples from the Late Jurassic “Leme?” facies (Croatia) were investigated to characterize their organic facies and palynofacies and their hydrocarbon generative potential. The results indicate that the organic rich sediments of “Leme?” facies were deposited within a relatively shallow marine environment at low redox potential, characterized as an oxygen depleted depositional setting with stratified bottom waters of the carbonate platform (Adriatic Carbonate Platform). The organic rich samples contain a high portion of lipid rich amorphous kerogen of algal/phytoplankton origin, enriched by bacterial biomass. Most of the analyzed samples have total organic carbon contents (TOC) greater than 3%, Rock-Eval S2 >20 mg HC/g rock, yielding Hydrogen Index (HI) values ranging from 509–602 mg HC/g TOC. According to these results, the analyzed samples have very good to excellent oil generative potential. Relatively high sulfur content suggests that the kerogen is best described as Type II-S. Biomarker maturity parameters, as well as the fluorescence of the isolated kerogen, show that the organic matter is at early to peak oil thermal maturity. The observed level of thermal maturity indicates that these samples were once buried to depths of ~5.5–5.8 km before being uplifted in the late Tertiary. The surface outcrops of the “Leme?” facies suggest that these strata have significant source potential and are the likely source of oil in the Croatian External Dinarides.  相似文献   
12.
The Gardar failed-rift Province is world-famous for its (per-)alkaline plutonic rocks. Elevated contents of F in the mantle source and F-enrichment in the parental melts have been suggested to account for the peculiarities of the Gardar rocks (e.g. their rare mineralogy, extreme enrichment of HFSE elements, Be or REE in the Ilímaussaq agpaites, and the formation of the unique Ivigtut cryolite deposit). To constrain the formation and chemical evolution of F-bearing melts and fluids, fluorides (fluorite, cryolite, villiaumite, cryolithionite), calcite and siderite from the Ilímaussaq, Motzfeldt and Ivigtut complexes were analysed for their trace element content focusing on the rare earth elements and yttrium (REE).The various generations of fluorite occurring in the granitic Ivigtut, agpaitic Ilímaussaq and miaskitic to agpaitic Motzfeldt intrusions all share a negative Eu anomaly which is attributed to (earlier) feldspar fractionation in the parental alkali basaltic melts. This interpretation is supported by the abundance of anorthositic xenoliths in many Gardar plutonic rocks.The primary magmatic fluorites from Ilímaussaq and Motzfeldt display very similar REE patterns suggesting a formation from closely related parental melts under similar conditions. Hydrothermal fluorites from these intrusions were used to constrain the multiple effects responsible for the incorporation of trace elements into fluorides: temperature dependence, fluid migration/interaction and complexation resulting in REE fractionation. Generally, the REE patterns of Gardar fluorides reflect the evolution and migration of a F/CO2-rich fluid leading to the formation of fluorite and fluorite/calcite veins. In certain units, this fluid inherited the REE patterns of altered host rocks. In addition, there is evidence of an even younger fluid of high REE abundance which resulted in highly variable REE concentrations (up to three orders of magnitude) within one sample of hydrothermal fluorite.The REE patterns of the granitic Ivigtut intrusion show flat to slightly heavy-REE-enriched patterns characterised by a strong tetrad effect. This effect is interpreted to record extensive fluid–rock interaction in highly fractionated, Si-rich systems.Interestingly, the fluorides appear to record different source REE patterns, as the spatially close Motzfeldt and Ilímaussaq intrusions show strong similarities and contrast with the Ivigtut intrusion located 100 km NE. These variations may be attributed to differences in the tectonic position of the intrusions or mantle heterogeneities.  相似文献   
13.
14.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号