首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   0篇
大气科学   2篇
地球物理   47篇
地质学   14篇
自然地理   1篇
  2018年   1篇
  2014年   2篇
  2013年   2篇
  2012年   4篇
  2011年   3篇
  2010年   4篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1995年   1篇
  1992年   2篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   3篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1979年   4篇
  1978年   1篇
  1977年   1篇
  1972年   1篇
  1968年   1篇
  1967年   1篇
  1964年   1篇
  1960年   1篇
  1959年   1篇
排序方式: 共有64条查询结果,搜索用时 31 毫秒
31.
mam mm ua a na Pn, Pg, Sn u Sg nu¶rt;u u au -ma. aa, m ¶rt; amu 5° m numa ua¶rt;a ¶rt;am mu a na n au ma¶rt;amu u mu anmau , uu m n u ma¶rt;am¶rt;a. am nmau a uu m anmau mmu aua.  相似文献   
32.
33.
We present the first results of a high-resolution teleseismic traveltime tomography and seismic anisotropy study of the lithosphere–asthenosphere system beneath the western Bohemian Massif. The initial high-resolution tomography down to a depth of 250 km did not image any columnar low-velocity anomaly which could be interpreted as a mantle plume anticipated beneath the Eger Rift, similar to recent findings of small plumes beneath the French Massif Central and the Eifel in Germany. Alternatively, we interpret the broad low-velocity anomaly beneath the Eger Rift by an upwelling of the lithosphere–asthenosphere transition. We also map lateral variations of seismic anisotropy of the mantle lithosphere from spatial variations of P -wave delay times and the shear wave splitting. Three major domains characterised by different orientations of seismic anisotropy correspond to the major tectonic units—Saxothuringian, Moldanubian and the Teplá-Barrandian—and their fabrics fit to those found in our previous studies of mantle anisotropy on large European scales.  相似文献   
34.
Heat Waves in the South Moravian Region During the Period 1961-1995   总被引:1,自引:0,他引:1  
Heat waves (periods of extremely hot summer weather) in the region of south Moravia are in the focus of this study. The introduced definition consists of three requirements imposed on the period that is considered a heat wave: at least three days with T MAX 30.0°C must be observed; the mean T MAX over the whole period is at least 30.0°C; and T MAX must not drop below 25.0°C. To compare the severity of the individual heat waves, various characteristics (duration, number of tropical days, peak temperature, cumulative temperature excess, precipitation amount) are examined. The heat wave index HWI is defined to express the severity of heat waves in the most comprehensive way. An extraordinary heat wave occurred in July and August 1994; it lasted more than a month at several stations, while the duration of a typical heat wave is only 4 - 7 days. The extremely long unbroken period of tropical days, and even of days with T MAX 32.0°C, represents the most distinct feature of the severe 1994 heat wave. With regard to heat wave characteristics, the summer temperature exceptionality of the early 1990s is indubitable.  相似文献   
35.
We present the first results of a comparison of deep lithosphere structure of three Variscan massifs - the Armorican Massif, French Massif Central and Bohemian Massif, as revealed by recent tomographic studies of seismic anisotropy. The data originate from several field measurements made in temporary arrays of stations equipped with both short-period and broadband seismometers with digital recording. The study is based on teleseismic body waves and a joint inversion of anisotropic data (P-residual spheres, the fast shear-wave polarizations and split times) and demonstrates that the three Variscan massifs appear to consist of at least two parts with different orientation of large-scale fabric derived from seismic anisotropy. The boundaries of anisotropic lithospheric domains are related to prominent tectonic features recognised on the surface as sutures, shear zones or transfer fault zones, as well as grabens, thus indicating that some of them extend deep through the entire lithosphere.  相似文献   
36.
Body-wave analysis — shear-wave splitting and P travel time residuals — detect anisotropic structure of the upper mantle beneath the Swedish part of Fennoscandia. Geographic variations of both the splitting measurements and the P-residual spheres map regions of different fabrics of the mantle lithosphere. The fabric of individual mantle domains is internally consistent, usually with sudden changes at their boundaries. Distinct backazimuth dependence of SKS splitting excludes single-layer anisotropy models with horizontal symmetry axes for the whole region. Based upon joint inversion of body-wave anisotropic parameters, we instead propose 3D self-consistent anisotropic models of well-defined mantle lithosphere domains with differently oriented fabrics approximated by hexagonal aggregates with plunging symmetry axes. The domain-like structure of the Precambrian mantle lithosphere, most probably retaining fossil fabric since the domains' origin, supports the idea of the existence of an early form of plate tectonics during the formation of continental cratons already in the Archean. Similarly to different geochemical and geological constraints, the 3D anisotropy modelling and mapping of fabrics of the lithosphere domains contribute to tracking plate tectonics regimes back in time.  相似文献   
37.
This paper describes late Cambrian dikes and Early Ordovician volcano-sedimentary successions of the Prague Basin, Bohemian Massif, to discuss the timing and kinematics of breakup of the northern margin of Gondwana. Andesitic dikes indicate minor E–W crustal extension in the late Cambrian, whereas the Tremadocian to Dapingian lithofacies distribution and linear array of depocenters suggest opening of this Rheic Ocean rift-related basin during NW–SE pure shear-dominated extension. This kinematic change was associated with the onset of basic submarine volcanism, presumably resulting from decompression mantle melting as the amount of extension increased. We conclude from these inferences and from a comparison with other Avalonian–Cadomian terranes that the rifting along the northern Gondwana margin was a two-stage process involving one major pulse of terrane detachment in the early Cambrian and one in the Early Ordovician. While the geodynamic cause for the former phase remains unclear, but still may include effects of Cadomian subduction (roll-back, slab break-off), isostatic rebound, or mantle plume, the incipient stage of the latter phase may have been triggered by the onset of subduction of the Iapetus Ocean at around 510 Ma, followed by advanced extension broadly coeval (Tremadocian to Darriwilian) in large portions of the Avalonian–Cadomian belt. Unequal amounts of extension resulted in the separation and drift of some terranes, while other portions of the belt remained adjacent to Gondwana.  相似文献   
38.
The seasonal variation of gravity wave activity at altitudes around 95 km is investigated using digital measurements of low-frequency nighttime radiowave absorption at Prhonice (50°N, 15°E) between 1989 and 1993. The analysis of 5 years of data allows two conclusions to be drawn: (1) under high solar activity conditions, there is no clearly detectable seasonal variation of gravity wave activity; (2) under medium solar activity conditions (1992, 1993), there is a tendency to a pronounced summer maximum.  相似文献   
39.
40.
Summary In this paper the solution of the direct magnetic problem for two-dimensional bodies, founded on the application of Green's theorem is derived. This solution is derived under the assumption that the components of the magnetization vector have continuous derivatives with respect to the coordinates and that they are continuous within the body. The problem is solved in terms of Green-type integrals for the scalar and vector potential of the magnetostatic field and it may serve the purpose of solving the problem of the analytical continuation of the external field into the body.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号