首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   284篇
  免费   12篇
  国内免费   1篇
测绘学   5篇
大气科学   10篇
地球物理   76篇
地质学   123篇
海洋学   23篇
天文学   41篇
自然地理   19篇
  2023年   2篇
  2022年   2篇
  2021年   3篇
  2020年   5篇
  2019年   5篇
  2018年   3篇
  2017年   5篇
  2016年   5篇
  2015年   12篇
  2014年   5篇
  2013年   17篇
  2012年   5篇
  2011年   12篇
  2010年   12篇
  2009年   13篇
  2008年   10篇
  2007年   9篇
  2006年   12篇
  2005年   11篇
  2004年   5篇
  2003年   2篇
  2002年   5篇
  2001年   6篇
  2000年   9篇
  1999年   5篇
  1998年   6篇
  1997年   6篇
  1996年   3篇
  1995年   7篇
  1994年   6篇
  1993年   7篇
  1992年   4篇
  1991年   4篇
  1990年   7篇
  1989年   5篇
  1988年   2篇
  1987年   2篇
  1986年   6篇
  1985年   3篇
  1984年   7篇
  1983年   7篇
  1982年   5篇
  1981年   7篇
  1979年   2篇
  1978年   6篇
  1977年   3篇
  1976年   2篇
  1974年   2篇
  1973年   3篇
  1965年   1篇
排序方式: 共有297条查询结果,搜索用时 672 毫秒
101.
The state and future of Mars polar science and exploration.   总被引:1,自引:0,他引:1  
As the planet's principal cold traps, the martian polar regions have accumulated extensive mantles of ice and dust that cover individual areas of approximately 10(6) km2 and total as much as 3-4 km thick. From the scarcity of superposed craters on their surface, these layered deposits are thought to be comparatively young--preserving a record of the seasonal and climatic cycling of atmospheric CO2, H2O, and dust over the past approximately 10(5)-10(8) years. For this reason, the martian polar deposits may serve as a Rosetta Stone for understanding the geologic and climatic history of the planet--documenting variations in insolation (due to quasiperiodic oscillations in the planet's obliquity and orbital elements), volatile mass balance, atmospheric composition, dust storm activity, volcanic eruptions, large impacts, catastrophic floods, solar luminosity, supernovae, and perhaps even a record of microbial life. Beyond their scientific value, the polar regions may soon prove important for another reason--providing a valuable and accessible reservoir of water to support the long-term human exploration of Mars. In this paper we assess the current state of Mars polar research, identify the key questions that motivate the exploration of the polar regions, discuss the extent to which current missions will address these questions, and speculate about what additional capabilities and investigations may be required to address the issues that remain outstanding.  相似文献   
102.
Snow is an important component of the Earth's climate system and is particularly vulnerable to global warming. It has been suggested that warmer temperatures may cause significant declines in snow water content and snow cover duration. In this study, snowfall and snowmelt were projected by means of a regional climate model that was coupled to a physically based snow model over Shasta Dam watershed to assess changes in snow water content and snow cover duration during the 21st century. This physically based snow model requires both physical data and future climate projections. These physical data include topography, soils, vegetation, and land use/land cover, which were collected from associated organizations. The future climate projections were dynamically downscaled by means of the regional climate model under 4 emission scenarios simulated by 2 general circulation models (fifth‐generation of the ECHAM general circulation model and the third‐generation atmospheric general circulation model). The downscaled future projections were bias corrected before projecting snowfall and snowmelt processes over Shasta Dam watershed during 2010–2099. This study's results agree with those of previous studies that projected snow water equivalent is decreasing by 50–80% whereas the fraction of precipitation falling as snowfall is decreasing by 15% to 20%. The obtained projection results show that future snow water content will change in both time and space. Furthermore, the results confirm that physical data such as topography, land cover, and atmospheric–hydrologic data are instrumental in the studies on the impact of climate change on the water resources of a region.  相似文献   
103.
104.
The wave-induced velocity and pressure fields beneath a large amplitude internal solitary wave of depression propagating over a smooth, flat, horizontal, and rigid boundary in a shallow two-layer fluid are computed numerically. A numerical ocean model is utilised, the set-up of which is designed and tuned to replicate the previously published experimental results of Carr and Davies (Phys Fluids 18(1):016,601–1–016,601–10, 2006). Excellent agreement is found between the two data sets and, in particular, the numerical simulation replicates the finding of a reverse flow along the bed aft of the wave. The numerically computed velocity and pressure gradients confirm that the occurrence of the reverse flow is a consequence of boundary layer separation in the adverse pressure gradient region. In addition, vortices associated with the reverse flow are seen to form near the bed.  相似文献   
105.
106.
Instrumentation built to record seeing data automatically via image motion measurements of bright stars in small telescopes is described. The centroid of the star image is found 256 times s-1 in one dimension and is analyzed on-line. The device works over a range of FWHM values as would be seen through a large telescope between <0.1 and 3.0 arcsec. The first results for two identical instruments set up at two locations near the duPont Telescope at Las Campanas Observatory are reported. For a total of 61 nights of data (450 h at each site), the median seeing is 0.6 arcsec, with quartiles at 0.4 and 0.8 arcsec. These are FWHM values referred to 5000 Å at the zenith. So far, the two sites are indistinguishable on average.  相似文献   
107.
CSHELL, the NASA Infrared Telescope Facility Cryogenic Echelle Spectrograph was designed to fill a need for high sensitivity, high resolution, long slit near-infrared spectroscopy. Scientific programs in the areas of comets, planetary atmospheres, young stellar objects, the interstellar medium, and galactic dynamics have been pursued with CSHELL and are described herein. The future of the instrument is also discussed.  相似文献   
108.
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号