首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   1篇
  国内免费   1篇
测绘学   2篇
大气科学   11篇
地球物理   14篇
地质学   14篇
海洋学   4篇
天文学   5篇
  2023年   2篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   5篇
  2010年   1篇
  2008年   6篇
  2007年   7篇
  2006年   4篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1992年   1篇
  1981年   2篇
  1960年   1篇
  1952年   3篇
排序方式: 共有50条查询结果,搜索用时 24 毫秒
21.
We have analyzed the Pb isotopic compositions of whole-rocks and various components (CAIs, chondrules, and/or mineral separates) of two carbonaceous chondrites, Allende (CV3) and Murchison (CM2), and nine ordinary chondrites, Sainte Marguerite (H4), Nadiabondi and Forest City (H5), Kernouvé (H6), Bjurböle (L/LL4), Elenovka and Ausson (L5), Tuxtuac (LL5), and Saint-Séverin (LL6) by MC-ICP-MS. Three CAI fractions from Allende define an isochron with an age of 4568.1 ± 9.4 Ma (MSWD = 0.08) and plot on the same isochron as fragments of the Efremovka inclusion E60 analyzed by Amelin et al. [Amelin, Y., Krot, A. N., Hutcheon, I. D., and Ulyanov, A. A. (2002a). Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions. Science297, 1679-1683]. When these two groups of samples are combined, the isochron yields an age of 4568.5 ± 0.5 (MSWD = 0.90), which is our best estimate of the age of the Solar System. Chondrules and pyroxene-olivine fractions from the ordinary chondrites yield ages that reflect the blocking of Pb isotope equilibration with the nebular gas. The combination of these ages with the corresponding metamorphic phosphate ages provides constraints on the thermal history of the different chondrite parent bodies. Among the H chondrites, Sainte Marguerite cooled to below ∼1100 K within a few My at 4565 Ma and to ∼800 K at 4563 Ma. Nadiabondi appears to have experienced a slightly more protracted cooling history with the corresponding interval lasting from 4559 to 4556 Ma. The data from Forest City and Kernouvé show evidence of late-stage perturbation with resulting U/Pb fractionation. Likewise, Pb isotopes in Tuxtuac (LL5) record a cooling history lasting from ∼4555 to 4544 Ma, which may indicate that the cooling history for the LL parent body was more prolonged than for the H parent body. We suggest a thermal evolution model for the growth of the planetary bodies based on the release of radiogenic heat from 26Al and 60Fe. This model incorporates the accretion rate, which determines the time at which the radiogenic heat becomes efficiently trapped, and the terminal size of the parent body, which controls its overall thermal inertia. The parent bodies of carbonaceous chondrites, which show little indication of metamorphic transformation, collect cooler nebular material at a relatively late stage. Small asteroids of ∼10-50 km radius accreting within 1-3 My could be the parent bodies of H and LL chondrites. The parent body of the L chondrites is likely to be a larger asteroid (r > 100 km) or possibly the product of collisions of smaller planetary bodies.  相似文献   
22.
New bulk Hf and Pb isotope data were obtained for 63 leached single zircons from Jack Hills (JH), Western Australia, using solution chemistry and, respectively, MC-ICP MS and ICP-MS. With the exception of one “young” zircon at 3.32 Ga, the remainder of the selected grains were previously dated at > 3.9 Ga by ion-microprobe. This work extends and complements the solution chemistry data of Harrison et al. [Harrison, T.M., Blichert-Toft, J., Müller, W., Albarède, F., Holden, P., Mojzsis, S.J., 2005. Heterogeneous Hadean hafnium: evidence of continental crust at 4.4 to 4.5 Ga. Science 310, 1947–1950.] but uses bulk rather than in situ Pb–Pb ages to interpret the Hf isotope data. This larger data set is used to explore whether the host rocks of the JH zircons formed as a succession of pulses or rather as a single event, and to calculate the age and assess the nature of their crustal protolith. We find that the parent granites of the JH zircons analyzed here formed during a single pulse 4.1 ± 0.1 Ga ago by the remelting of a 4.30–4.36 Ga old protolith. Monte Carlo modeling indicates that the 176Lu/177Hf ratios of this material (< 0.01) are unlike the ratios of modern-type oceanic crust and island arc rocks but rather fit a tonalite–trondhjemite–granodiorite (TTG) source. TTGs themselves derived their inordinately enriched character from a basaltic progenitor which corresponds to the missing enriched reservoir identified by the 143Nd–144Nd, 142Nd–144Nd, and 176Hf/177Hf systematics of Archean rocks. We speculate that crystallization of the magma ocean in the presence of garnet left the upper mantle and an early basaltic crust enriched in incompatible elements. Reaction of this early crust with the overlying hydrosphere and subsequent foundering into the mantle gave rise at ~ 4.3 Ga to the TTG protolith of the JH granites. Dating the onset of plate tectonics therefore depends on whether TTGs can be considered as subduction zone magmas or not.  相似文献   
23.
24.
The Hf isotopic composition of zircon reference material 91500   总被引:2,自引:0,他引:2  
Janne Blichert-Toft   《Chemical Geology》2008,253(3-4):252-257
Ten new single zircon fragments, analyzed by solution chemistry and MC-ICP-MS, of the 91500 zircon standard show no evidence to support a recent claim based on in situ data that this reference material is heterogeneous in terms of its radiogenic Hf isotope composition and as a consequence should be abandoned as a reliable interlaboratory standard. Rather, the larger spread in 176Hf/177Hf among in situ data compared with solution chemistry data may reflect the uncertainties resulting from prominent isobaric interference corrections inherent to the in situ analytical protocol. The unweighted mean values of 176Hf/177Hf and 176Lu/177Hf measured for the ten zircon fragments of this study are 0.282313 ± 0.000008 (2σ) and 0.000311 ± 0.000136 (2σ), respectively. Pooling the mean 176Hf/177Hf of this work with those of published solution chemistry studies results in a value of 0.282308 ± 0.000006 (2σ; relative to 176Hf/177Hf = 0.282163 for JMC-475), which is recommended here as the currently best estimate of the Hf isotopic composition of this standard. All published studies agree on a value of ~ 0.0003 for the corresponding 176Lu/177Hf ratio.  相似文献   
25.
We have measured the Hf and Nd isotopic compositions of 38 basalts from the Ko’olau drill hole, Hawai’i. The basalts show limited variations in both 176Hf/177Hf and 143Nd/144Nd (ε Nd varies from +4.2 to +7.3 and ε Hf from +8.0 to +12.3). Their correlated variation has an R 2 of 0.86. The data form an array with a slope of 1.2 on an ε Hfε Nd isotope correlation diagram, while the slope of all Hawai’ian basalt data is 0.98. Both slopes are significantly shallower than that of the mantle array of 1.4 defined by ocean island basalts. Previous studies have shown that a shallow slope in Hf–Nd isotope space can be related to ancient pelagic sediments in the mantle source (Blichert-Toft et al. 1999; Salters and White 1998). However, the combined variations in Ko’olau basalts of Hf–Nd–Pb–Os isotopic compositions and trace element ratios, such as La/Nb, Th/La and Sr/Nd, are not consistent with the simple addition of a sediment component to the mantle. We instead propose that the shallow slope on the Hf–Nd isotope correlation diagram for Ko’olau shield stage basalts can be better explained if the enriched endmember contains either an ancient oceanic lithosphere component or the high-176Hf/177Hf component observed in the Salt Lake Crater (SLC) peridotite xenoliths (which also have a depleted lithosphere origin). Since Ko’olau basalts have high 187Os/188Os (0.135–0.160) and the SLC xenoliths have 187Os/188Os up to 0.13 (Lassiter et al. 2000) Os-isotopes are consistent with the latter being a component in the enriched Ko’olau source.
Vincent J. M. SaltersEmail:
  相似文献   
26.
Using eight dark matter haloes extracted from fully self-consistent cosmological N -body simulations, we perform microlensing experiments. A hypothetical observer is placed at a distance of 8.5 kpc from the centre of the halo measuring optical depths, event durations and event rates towards the direction of the Large Magellanic Cloud. We simulate 1600 microlensing experiments for each halo. Assuming that the whole halo consists of massive astronomical compact halo objects (MACHOs),   f = 1.0  , and a single MACHO mass is   m M= 1.0 M  , the simulations yield mean values of  τ= 4.7+5.0−2.2× 10−7  and  Γ= 1.6+1.3−0.6× 10−6  events star−1 yr−1. We find that triaxiality and substructure can have major effects on the measured values so that τ and Γ values of up to three times the mean can be found. If we fit our values of τ and Γ to the MACHO collaboration observations, we find   f = 0.23+0.15−0.13  and   m M= 0.44+0.24−0.16  . Five out of the eight haloes under investigation produce f and m M values mainly concentrated within these bounds.  相似文献   
27.
Due to acidity and metals from acid sulfate soils (a.s. soils), many watercourses in midwestern Finland have since 1960s regularly experienced short but intensive periods of poor water quality during high water flow. This has led to occasional massive fish kills and a significant decline in fish populations.  相似文献   
28.
Climate models predict substantial summer precipitation reductions in Europe and the Mediterranean region in the twenty-first century, but the extent to which these models correctly represent the mechanisms of summertime precipitation in this region is uncertain. Here an analysis is conducted to compare the observed and simulated impacts of the dominant large-scale driver of summer rainfall variability in Europe and the Mediterranean, the summer North Atlantic Oscillation (SNAO). The SNAO is defined as the leading mode of July–August sea level pressure variability in the North Atlantic sector. Although the SNAO is weaker and confined to northern latitudes compared to its winter counterpart, with a southern lobe located over the UK, it significantly affects precipitation in the Mediterranean, particularly Italy and the Balkans (correlations of up to 0.6). During high SNAO summers, when strong anticyclonic conditions and suppressed precipitation prevail over the UK, the Mediterranean region instead is anomalously wet. This enhanced precipitation is related to the presence of a strong upper-level trough over the Balkans—part of a hemispheric pattern of anomalies that develops in association with the SNAO—that leads to mid-level cooling and increased potential instability. Neither this downstream extension nor the surface influence of the SNAO is captured in the two CMIP3 models examined (HadCM3 and GFDL-CM2.1), with weak or non-existent correlations between the SNAO and Mediterranean precipitation. Because these models also predict a strong upward SNAO trend in the future, the error in their representation of the SNAO surface signature impacts the projected precipitation trends. In particular, the attendant increase in precipitation that, based on observations, should occur in the Mediterranean and offset some of the non-SNAO related drying does not occur. Furthermore, the fact that neither the observed SNAO nor summer precipitation in Europe/Mediterranean region exhibits any significant trend so far (for either the full century or the recent half of the record) does not increase our confidence in these model projections.  相似文献   
29.
On the Lu-Hf Isotope Geochemistry of Silicate Rocks   总被引:9,自引:0,他引:9  
This paper reviews the history (TIMS, hot‐SIMS, MC‐ICP‐MS), significance, geochemical behaviour and current uncertainties (λ176 Lu, Hf‐Nd Bulk Silicate Earth) surrounding the Lu‐Hf isotope system, and thus marks two decades of its application to geochemical problems. An appendix further presents (a) improvements to the original chemistry protocol of Blichert‐Toft et al. (1997) for application to Mg‐rich samples and (b) a compilation of previously published and new Hf isotope determinations by MC‐ICP‐MS for a set of international rock reference materials. Prior to the advent of multiple‐collector plasma source mass spectrometry (MC‐ICP‐MS), routine analysis of the Lu‐Hf isotope system developed only slowly because of the extreme difficulty of measuring Hf isotope compositions with thermal ionisation mass spectrometry, caused by the very high first ionisation potential of Hf. However, Hf isotope compositions can be measured relatively easily using MC‐ICP‐MS and this new technique now provides reproducible measurements at high precision regardless of the matrix from which Hf is separated. Of the commonly used long‐lived radiogenic isotope systems, only the Sm‐Nd and Lu‐Hf isotope systems are unaffected by parent/daughter fractionations related to volatile nebular processes and core formation. While other systems (Rb‐Sr, U‐Th‐Pb, Re‐Os) may also be used to investigate the chemical evolution of the Earth, Moon, Mars and parent bodies of differentiated meteorites, the larger uncertainties in their bulk chemical and isotopic values limit their application to determine geochemical budgets and assess planetary mantle‐crust evolution. In the study of garnet‐bearing rocks, both for dating purposes and as an isotopic tracer for source provenance and mantle processes, the Lu‐Hf isotope system likewise is of major interest because of the high partition coefficient of Lu compared to Hf for garnet with respect to other minerals. Furthermore, the larger Lu/Hf fractionation compared to Sm/Nd during melting beneath ridges produces proportionally higher Lu/Hf in the residue and faster in‐growth of a radiogenic Hf isotopic signature (compared to Nd), which may help shed light on the dynamics of mantle melting. While the chemistry protocol and mass spectrometric technique for high‐precision Lu‐Hf isotope analysis have been resolved in satisfactory ways over the past five years, more accurate determination of the decay constant for 176 Lu, at present known with a precision of only about 4%, still needs to be completed and a consensus reached on which value to use for future Lu‐Hf isotope studies. Although the current combined Lu‐Hf and Sm‐Nd Bulk Silicate Earth parameters are plagued by possible incompatibilities in chondrite selection and potential interlaboratory biases, a more accurate set of values may not be readily established owing to heterogeneities in the isotopic composition of chondrites that far exceed present analytical accuracy.  相似文献   
30.
考虑目标光谱差异的机载离散激光雷达叶面积指数反演   总被引:1,自引:0,他引:1  
利用间隙率模型反演LAI(Leaf Area Index),需要同时获取冠层间隙率和消光系数,后者与冠层叶倾角分布有关。基于点云数量构建激光雷达穿透指数LPI (LiDAR Penetration Index),用以代替冠层间隙率GF (Gap Fraction),并利用间隙率模型反演冠层LAI是利用LiDAR PCD(LiDAR Point Cloud Data)数据反演冠层LAI主要思路。冠层和背景的光谱差异是影响PCD数据中冠层和背景点云数量的重要因素,因此从LPI到GF的校正需要获取背景和冠层的后向散射系数比(μ=ρg/ρv)。本文基于PCD数据中点云强度进行μ值获取,用以实现LPI到GF的校正;在假设区域内叶倾角满足椭球形叶倾角分布的基础上,利用样地尺度下的多角度GF,采用有约束的非线性最优化方法获取椭球形叶倾角分布参数χ,实现冠层消光系数的获取;最后利用间隙率模型实现基于PCD数据的LAI反演。本文探讨了基于PCD数据进行冠层LAI反演时,样地尺度Rxy_Tile、样方尺度Rxy_Plot以及进行背景和冠层分割的高度阈值Ht对模型的影响。结果显示,由于区域内地衣植被广泛覆盖,基于点云强度的μ 值接近1,符合区域特点;经过μ值校正后的GF对冠层间隙率具有较好的反映能力(R2=0.78,RMSE=0.09);对于优势种明显的区域,基于样地尺度内多角度GF的χ值反演受样地内冠间大间隙的影响,选择合适的样地尺度能够减小LAI反演过程中的系统性误差;结合地面参考数据,确定的最优Rxy_TileRxy_PlotHt分别为950 m、10 m和2.6 m,在此基础上反演的LAI与地面测量数据具有高度的一致性(R2=0.84,RMSE=0.51);与Rxy_Plot相比,基于间隙率模型的LAI反演对Ht的选择更为敏感。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号