首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8211篇
  免费   390篇
  国内免费   44篇
测绘学   305篇
大气科学   581篇
地球物理   3076篇
地质学   2767篇
海洋学   390篇
天文学   1137篇
综合类   42篇
自然地理   347篇
  2022年   59篇
  2021年   131篇
  2020年   155篇
  2019年   119篇
  2018年   325篇
  2017年   306篇
  2016年   468篇
  2015年   328篇
  2014年   368篇
  2013年   487篇
  2012年   412篇
  2011年   391篇
  2010年   363篇
  2009年   403篇
  2008年   314篇
  2007年   240篇
  2006年   240篇
  2005年   177篇
  2004年   174篇
  2003年   174篇
  2002年   145篇
  2001年   155篇
  2000年   126篇
  1999年   98篇
  1998年   124篇
  1997年   107篇
  1996年   93篇
  1995年   105篇
  1994年   111篇
  1993年   87篇
  1992年   80篇
  1991年   78篇
  1990年   87篇
  1989年   88篇
  1988年   64篇
  1987年   66篇
  1986年   69篇
  1985年   74篇
  1984年   60篇
  1983年   78篇
  1982年   71篇
  1981年   65篇
  1980年   66篇
  1979年   61篇
  1978年   72篇
  1977年   59篇
  1975年   57篇
  1973年   59篇
  1972年   45篇
  1971年   53篇
排序方式: 共有8645条查询结果,搜索用时 31 毫秒
221.
222.
223.
224.
Structural, petrological and textural studies are combined with phase equilibria modelling of metapelites from different structural levels of the Roc de Frausa Massif in the Eastern Pyrenees. The pre‐Variscan lithological succession is divided into the Upper, Intermediate and Lower series by two orthogneiss sheets and intruded by Variscan igneous rocks. Structural analysis reveals two phases of Variscan deformation. D1 is marked by tight to isoclinal small‐scale folds and an associated flat‐lying foliation (S1) that affects the whole crustal section. D2 structures are characterized by tight upright folds facing to the NW with steep NE–SW axial planes. D2 heterogeneously reworks the D1 fabrics, leading to an almost complete transposition into a sub‐vertical foliation (S2) in the high‐grade metamorphic domain. All structures are affected by late open to tight, steeply inclined south‐verging NW–SE folds (F3) compatible with steep greenschist facies dextral shear zones of probable Alpine age. In the micaschists of the Upper series, andalusite and sillimanite grew during the formation of the S1 foliation indicating heating from 580 to 640 °C associated with an increase in pressure. Subsequent static growth of cordierite points to post‐D1 decompression. In the Intermediate series, a sillimanite–biotite–muscovite‐bearing assemblage that is parallel to the S1 fabric is statically overgrown by cordierite and K‐feldspar. This sequence points to ~1 kbar of post‐D1 decompression at 630–650 °C. The Intermediate series is intruded by a gabbro–diorite stock that has an aureole marked by widespread migmatization. In the aureole, the migmatitic S1 foliation is defined by the assemblage biotite–sillimanite–K‐feldspar–garnet. The microstructural relationships and garnet zoning are compatible with the D1 pressure peak at ~7.5 kbar and ~750 °C. Late‐ to post‐S2 cordierite growth implies that F2 folds and the associated S2 axial planar leucosomes developed during nearly isothermal decompression to <5 kbar. The Lower series migmatites form a composite S1–S2 fabric; the garnet‐bearing assemblage suggests peak P–T conditions of >5 kbar at suprasolidus conditions. Almost complete consumption of garnet and late cordierite growth points to post‐D2 equilibration at <4 kbar and <750 °C. The early metamorphic history associated with the S1 fabric is interpreted as a result of horizontal middle crustal flow associated with progressive heating and possible burial. The upright F2 folding and S2 foliation are associated with a pressure decrease coeval with the intrusion of mafic magma at mid‐crustal levels. The D2 tectono‐metamorphic evolution may be explained by a crustal‐scale doming associated with emplacement of mafic magmas into the core of the dome.  相似文献   
225.
We investigate the influence of mantle flow relative to the lithosphere on subduction dynamics. We use 2D thermo‐mechanical models assuming incompressible non‐Newtonian fluid rheology. Different mantle flow velocities consistent with absolute plate motion models are tested, as well as both directions of flow, either sustaining or opposing slab dip. The effects of different inflow/outflow velocity profiles, slab strengths and upper–lower mantle viscosity contrasts are also evaluated. Slab dip deviations between models with opposite mantle flow directions range from 37° for relatively strong slabs (ηmax = 1025 Pa s) to 50° for weaker slabs (ηmax = 1024 Pa s), accounting for a significant amount of natural slab dip variability. For imposed mantle flow supporting the slab, the initial stage of slab steepening is followed by a stage of continuous slab dip decrease. This slab shallowing eventually leads to mantle wedge closure, subduction cessation and slab break‐off, possibly driving subduction flips.  相似文献   
226.
227.
The respiratory potential [i.e. electron transport system activity (ETSA)] of soils and sediments from five floodplain habitats (channel, gravel, islands, riparian forest and grassland) of the Urbach River, Switzerland, and actual respiration rate (R) of the same samples exposed to experimental inundation were measured. Measurements were carried out at three incubation temperatures (4°C, 12°C and 20°C), and ETSA/R ratios (i.e. exploitation of the overall metabolic capacity) were investigated to better understand the effects of temperature and inundation on floodplain functional heterogeneity. Furthermore, ETSA/R ratios obtained during experimental inundation were compared with ETSA/R ratios from field measurements to investigate the exploitation in total metabolic potential at different conditions. Lowest ETSA and R were measured in samples from channel and gravel habitats, followed by those from islands. Substantially higher values were measured in soils from riparian forest and grassland. Both ETSA and R increased with increasing temperature in samples from all habitats, while the ETSA/R ratio decreased because of a rapid response in microbial community respiration to higher temperatures. The metabolic capacity exploitation (i.e. ETSA/R) during experimental inundation was lowest in predominantly terrestrial samples (riparian forest and grassland), indicating the weakest response to wetted conditions. Comparison of experimentally inundated and field conditions revealed that in rarely flooded soils, the metabolic capacity was less exploited during inundation than during non‐flooded conditions. The results suggest high sensitivity in floodplain respiration to changes in temperature and hydrological regime. ETSA/R ratios are considered good indicators of changes in metabolic activity of floodplain soils and sediments, and thus useful to estimate the impact of changes in hydrological regime or to evaluate success of floodplain restoration actions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
228.
229.
Recent studies using water‐stable isotopes (δ18O and δ2H) have suggested an ecohydrological separation of water flowing to streams or recharging groundwater and water used by trees, known as the ‘two water worlds’ (TWW) hypothesis. In this study, we measured water isotopic composition in precipitation [open field and throughfall, i.e. local meteoric water line (LMWL)] and the mobile water compartment (i.e. stream and soil solution), bulk soil water and xylem water over a period of 1.5 years in two headwater catchments: NF, covered with old growth native evergreen forest (Aetoxicon punctatum, Laureliopsis philippiana and Eucriphya cordifolia), and EP, covered with 4 and 16‐year‐old Eucalyptus nitens stands. Our results show that precipitation, stream and soil solution plot approximately along the LMWL, while xylem waters from all studied tree species plot below the LMWL, supporting the TWW hypothesis. However, we also found evidence of ecohydrological connectivity during the wet season, likely controlled by the amount of antecedent precipitation. These observations hold for all investigated tree species. On both sites, a different precipitation source for stream and xylem water was observed. However, in EP, bulk soil showed a similar precipitation source as xylem water from both E. nitens stands. This suggests that E. nitens may use water that is recharging the bulk soil compartment. We conclude that under a rainy temperate climate, the TWW hypothesis is temporal and does not apply during wet seasons. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
230.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号