首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4916篇
  免费   169篇
  国内免费   48篇
测绘学   99篇
大气科学   402篇
地球物理   1241篇
地质学   1656篇
海洋学   460篇
天文学   759篇
综合类   18篇
自然地理   498篇
  2022年   24篇
  2021年   65篇
  2020年   61篇
  2019年   70篇
  2018年   93篇
  2017年   82篇
  2016年   132篇
  2015年   132篇
  2014年   132篇
  2013年   233篇
  2012年   154篇
  2011年   240篇
  2010年   173篇
  2009年   249篇
  2008年   210篇
  2007年   196篇
  2006年   206篇
  2005年   176篇
  2004年   164篇
  2003年   147篇
  2002年   152篇
  2001年   76篇
  2000年   98篇
  1999年   82篇
  1998年   84篇
  1997年   63篇
  1996年   63篇
  1995年   86篇
  1994年   81篇
  1993年   62篇
  1992年   65篇
  1991年   51篇
  1990年   70篇
  1989年   61篇
  1988年   60篇
  1987年   64篇
  1986年   59篇
  1985年   69篇
  1984年   91篇
  1983年   70篇
  1982年   70篇
  1981年   58篇
  1980年   68篇
  1979年   55篇
  1978年   56篇
  1977年   40篇
  1976年   50篇
  1975年   51篇
  1974年   39篇
  1973年   51篇
排序方式: 共有5133条查询结果,搜索用时 15 毫秒
291.
Zircon from lower crustal xenoliths erupted in the Navajo volcanic field was analyzed for U–Pb and Lu–Hf isotopic compositions to characterize the lower crust beneath the Colorado Plateau and to determine whether it was affected by ∼1.4 Ga granitic magmatism and metamorphism that profoundly affected the exposed middle crust of southwestern Laurentia. Igneous zircon in felsic xenoliths crystallized at 1.73 and 1.65 Ga, and igneous zircon in mafic xenoliths crystallized at 1.43 Ga. Most igneous zircon has unradiogenic initial Hf isotopic compositions (ɛHf=+4.1–+7.8) and 1.7–1.6 Ga depleted mantle model ages, consistent with 1.7–1.6 Ga felsic protoliths being derived from “juvenile” Proterozoic crust and 1.4 Ga mafic protoliths having interacted with older crust. Metamorphic zircon grew in four pulses between 1.42 and 1.36 Ga, at least one of which was at granulite facies. Significant variability within and between xenoliths in metamorphic zircon initial Hf isotopic compositions (ɛHf=−0.7 to +13.6) indicates growth from different aged sources with diverse time-integrated Lu/Hf ratios. These results show a strong link between 1.4 Ga mafic magmatism and granulite facies metamorphism in the lower crust and granitic magmatism and metamorphism in the exposed middle crust.  相似文献   
292.
Large asteroid impacts are rare, and those into the deep ocean are rarer still. The Eltanin asteroid impact around 2.51 ± 0.07 Ma occurred at a time of great climatic and geological change associated with the Pliocene–Pleistocene boundary. Numerical models of the event indicate that a megatsunami was generated, although there is debate concerning its magnitude and the region‐wide extent of its influence. We summarise the existing evidence for possible Eltanin megatsunami deposits in Antarctica, Chile and New Zealand, while also examining other potential sites from several locations, mainly around the South Pacific region. In reviewing these data we note that these events were unfolding at the same time as those associated with the Pliocene–Pleistocene boundary and, as such, most of the geological evidence from that time has a climatic interpretation. The potential climatic and geological ramifications of the Eltanin asteroid impact, however, have failed to be considered by most researchers studying this time period. Although we are not advocating that all geological activity at that time is connected with the Eltanin asteroid impact, it raises interesting questions about the role potentially played by such catastrophic events in contributing to or even triggering epochal transitions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
293.
Suspended material collected at various stations in Narragansett Bay was analyzed for fatty acids and hydrocarbons. The qualitative and quantitative distributions of these compounds indicated that the influence of sewage and other pollutants was greatest in the river areas. Based on concentrations of polyunsaturated fatty acids, the highest densities of phytoplankton were interpreted to occur at the mid and lower Bay stations, and the percentage of phytoplankton in suspended material was estimated from the concentration of heneicosahexaene. The concentrations of fatty acids and hydrocarbons in the suspended material decreased from the river stations to the mid and lower Bay stations, closely following a similar trend observed in the sediment. Possible sources of the suspended material and the influence of these sources on this material in various areas of the Bay are discussed, and attempts are made to interrelate the suspended material, resuspended sediment, phytoplankton, and sewage effluent with chemical and biochemical diagenetic changes.  相似文献   
294.
During September 2008 and February 2009, the NR/V Alliance extensively sampled the waters of the Sea of Marmara within the framework of the Turkish Straits System (TSS) experiment coordinated by the NATO Undersea Research Centre. The observational effort provided an opportunity to set up realistic numerical experiments for modeling the observed variability of the Marmara Sea upper layer circulation at mesoscale resolution over the entire basin during the trial period, complementing relevant features and forcing factors revealed by numerical model results with information acquired from in situ and remote sensing datasets. Numerical model solutions from realistic runs using the Regional Ocean Modeling System (ROMS) produce a general circulation in the Sea of Marmara that is consistent with previous knowledge of the circulation drawn from past hydrographic measurements, with a westward meandering current associated with a recurrent large anticyclone. Additional idealized numerical experiments illuminate the role various dynamics play in determining the Sea of Marmara circulation and pycnocline structure. Both the wind curl and the strait flows are found to strongly influence the strength and location of the main mesoscale features. Large displacements of the pycnocline depth were observed during the sea trials. These displacements can be interpreted as storm-driven upwelling/downwelling dynamics associated with northeasterly winds; however, lateral advection associated with flow from the Straits also played a role in some displacements.  相似文献   
295.
The snowfall in the Baltimore/Washington metropolitan area during the winter of 2009/2010 was unprecedented and caused serious snow‐related disruptions. In February 2010, snowfall totals approached 2 m, and because maximum temperatures were consistently below normal, snow remained on the ground the entire month. One of the biggest contributing factors to the unusually severe winter weather in 2009/2010, throughout much of the middle latitudes, was the Arctic Oscillation. Unusually high pressure at high latitudes and low pressure at middle latitudes forced a persistent exchange of mass from north to south. In this investigation, a concerted effort was made to link remotely sensed falling snow observations to remotely sensed snow cover and snowpack observations in the Baltimore/Washington area. Specifically, the Advanced Microwave Scanning Radiometer onboard the Aqua satellite was used to assess snow water equivalent, and the Advanced Microwave Sounding Unit‐B and Microwave Humidity Sounder were employed to detect falling snow. Advanced Microwave Scanning Radiometer passive microwave signatures in this study are related to both snow on the ground and surface ice layers. In regard to falling snow, signatures indicative of snowfall can be observed in high frequency brightness temperatures of Advanced Microwave Sounding Unit‐B and Microwave Humidity Sounder. Indeed, retrievals show an increase in snow water equivalent after the detection of falling snow. Yet, this work also shows that falling snow intensity and/or the presence of liquid water clouds impacts the ability to reliably detect snow water equivalent. Moreover, changes in the condition of the snowpack, especially in the surface features, negatively affect retrieval performance. Copyright © 2011. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   
296.
Satellite gravity measurements from the Gravity Recovery and Climate Experiment (GRACE) provide quantitative measurement of terrestrial water storage (TWS) changes with unprecedented accuracy. Combining GRACE-observed TWS changes and independent estimates of water change in soil and snow and surface reservoirs offers a means for estimating groundwater storage change. Since its launch in March 2002, GRACE time-variable gravity data have been successfully used to quantify long-term groundwater storage changes in different regions over the world, including northwest India, the High Plains Aquifer and the Central Valley in the USA, the North China Plain, Middle East, and southern Murray–Darling Basin in Australia, where groundwater storage has been significantly depleted in recent years (or decades). It is difficult to rely on in situ groundwater measurements for accurate quantification of large, regional-scale groundwater storage changes, especially at long timescales due to inadequate spatial and temporal coverage of in situ data and uncertainties in storage coefficients. The now nearly 13 years of GRACE gravity data provide a successful and unique complementary tool for monitoring and measuring groundwater changes on a global and regional basis. Despite the successful applications of GRACE in studying global groundwater storage change, there are still some major challenges limiting the application and interpretation of GRACE data. In this paper, we present an overview of GRACE applications in groundwater studies and discuss if and how the main challenges to using GRACE data can be addressed.  相似文献   
297.
Nuclear magnetic resonance (NMR) logging provides a new means of estimating the hydraulic conductivity (K) of unconsolidated aquifers. The estimation of K from the measured NMR parameters can be performed using the Schlumberger‐Doll Research (SDR) equation, which is based on the Kozeny–Carman equation and initially developed for obtaining permeability from NMR logging in petroleum reservoirs. The SDR equation includes empirically determined constants. Decades of research for petroleum applications have resulted in standard values for these constants that can provide accurate estimates of permeability in consolidated formations. The question we asked: Can standard values for the constants be defined for hydrogeologic applications that would yield accurate estimates of K in unconsolidated aquifers? Working at 10 locations at three field sites in Kansas and Washington, USA, we acquired NMR and K data using direct‐push methods over a 10‐ to 20‐m depth interval in the shallow subsurface. Analysis of pairs of NMR and K data revealed that we could dramatically improve K estimates by replacing the standard petroleum constants with new constants, optimal for estimating K in the unconsolidated materials at the field sites. Most significant was the finding that there was little change in the SDR constants between sites. This suggests that we can define a new set of constants that can be used to obtain high resolution, cost‐effective estimates of K from NMR logging in unconsolidated aquifers. This significant result has the potential to change dramatically the approach to determining K for hydrogeologic applications.  相似文献   
298.
Complex flows in heterogeneous confined and unconfined aquifers is a phenomenon that continues to present difficulties in flow mapping and modelling in the field, laboratory, and through numerical simulations. It is often the case with complicated phenomena that transformative scaling and reduction of the problem through symmetry is of great efficacy in the formation of predictive models in both the laboratory and computational settings. A detailed a study of the application of a broad class of Lie scaling transformations on a set of equations representing the groundwater flows in heterogeneous confined and unconfined aquifers has produced a set of scaling relationships between the spatial variables, hydrologic variables, and parameters. The set of scaling transformations preserve the structure of the equations in the sense that the scaling transformations leave the initial‐boundary value system representing the invariant groundwater flows. This theoretical approach elucidates not only the scaling relationships but also the properties that hydrologic variables and parameters must satisfy in order for calling to be possible. Validation of the theory developed is carried out through a series of four numerical simulations using the USGS modflow ‐2005 software package. The results of these experiments demonstrate that the derived scaling transformations can effectively form predictive models of large‐scale phenomena at small scales with negligible error in many cases. Comments on the limitations of the approach and directions for future research are made in the closing sections. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
299.
Recent advances have been made to modernize estimates of probable precipitation scenarios; however, researchers and engineers often continue to assume that rainfall events can be described by a small set of event statistics, typically average intensity and event duration. Given the easy availability of precipitation data and advances in desk‐top computational tools, we suggest that it is time to rethink the ‘design storm’ concept. Design storms should include more holistic characteristics of flood‐inducing rain events, which, in addition to describing specific hydrologic responses, may also be watershed or regionally specific. We present a sensitivity analysis of nine precipitation event statistics from observed precipitation events within a 60‐year record for Tompkins County, NY, USA. We perform a two‐sample Kolmogorov–Smirnov (KS) test to objectively identify precipitation event statistics of importance for two related hydrologic responses: (1) peak outflow from the Six Mile Creek watershed and (2) peak depth within the reservoir behind the Six Mile Creek Dam. We identify the total precipitation depth, peak hourly intensity, average intensity, event duration, interevent duration, and several statistics defining the temporal distribution of precipitation events to be important rainfall statistics to consider for predicting the watershed flood responses. We found that the two hydrologic responses had different sets of statistically significant parameters. We demonstrate through a stochastic precipitation generation analysis the effects of starting from a constrained parameter set (intensity and duration) when predicting hydrologic responses as opposed to utilizing an expanded suite of rainfall statistics. In particular, we note that the reduced precipitation parameter set may underestimate the probability of high stream flows and therefore underestimate flood hazard. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
300.
James M. Buttle 《水文研究》2016,30(24):4644-4653
The potential for dynamic storage to serve as a metric of basin behaviour was assessed using data from five drainage basins with headwaters on the thick sand and gravel deposits of the Oak Ridges Moraine in southern Ontario, Canada. Dynamic storage was directly correlated with the ratio of variability of δ2H in streamflow relative to that in precipitation. This ratio has previously been shown to be inversely related to basin mean transit time (MTT), suggesting an inverse relationship between dynamic storage and MTT for the study basins. Dynamic storage was also directly correlated with interannual variability in stream runoff, baseflow and baseflow:runoff ratio, implying that basins with smaller dynamic storage have less interannual variability in their streamflow regimes. These preliminary results suggest that dynamic storage may serve as a readily derived and useful metric of basin behaviour for inter‐basin comparisons. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号