首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36672篇
  免费   692篇
  国内免费   417篇
测绘学   1322篇
大气科学   2811篇
地球物理   7380篇
地质学   12891篇
海洋学   2919篇
天文学   8392篇
综合类   160篇
自然地理   1906篇
  2021年   332篇
  2020年   338篇
  2019年   392篇
  2018年   902篇
  2017年   855篇
  2016年   1147篇
  2015年   710篇
  2014年   1086篇
  2013年   1906篇
  2012年   1178篇
  2011年   1502篇
  2010年   1237篇
  2009年   1627篇
  2008年   1400篇
  2007年   1350篇
  2006年   1376篇
  2005年   1151篇
  2004年   1032篇
  2003年   1014篇
  2002年   1003篇
  2001年   847篇
  2000年   835篇
  1999年   750篇
  1998年   701篇
  1997年   694篇
  1996年   629篇
  1995年   610篇
  1994年   584篇
  1993年   485篇
  1992年   448篇
  1991年   464篇
  1990年   477篇
  1989年   446篇
  1988年   418篇
  1987年   494篇
  1986年   420篇
  1985年   514篇
  1984年   568篇
  1983年   531篇
  1982年   510篇
  1981年   416篇
  1980年   429篇
  1979年   367篇
  1978年   363篇
  1977年   336篇
  1976年   309篇
  1975年   305篇
  1974年   320篇
  1973年   355篇
  1972年   216篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Several potential dust sources, including generic sources of sparsely vegetated alluvium, playa deposits, and anthropogenic emissions, as well as the area around Owens Lake, California, affect the composition of modern dust in the southwestern United States. A comparison of geochemical analyses of modern and old (a few thousand years) dust with samples of potential local sources suggests that dusts reflect four primary sources: (1) alluvial sediments (represented by Hf, K, Rb, Zr, and rare-earth elements, (2) playas, most of which produce calcareous dust (Sr, associated with Ca), (3) the area of Owens (dry) Lake, a human-induced playa (As, Ba, Li, Pb, Sb, and Sr), and (4) anthropogenic and/or volcanic emissions (As, Cr, Ni, and Sb). A comparison of dust and source samples with previous analyses shows that Owens (dry) Lake and mining wastes from the adjacent Cerro Gordo mining district are the primary sources of As, Ba, Li, and Pb in dusts from Owens Valley. Decreases in dust contents of As, Ba, and Sb with distance from Owens Valley suggest that dust from southern Owens Valley is being transported at least 400 km to the east. Samples of old dust that accumulated before European settlement are distinctly lower in As, Ba, and Sb abundances relative to modern dust, likely due to modern transport of dust from Owens Valley. Thus, southern Owens Valley appears to be an important, geochemically distinct, point source for regional dust in the southwestern United States.  相似文献   
992.
The fossilised soft tissues of a tadpole and an associated coprolitic structure from the organic-rich volcanoclastic lacustrine Upper Oligocene Enspel sediments (Germany) were investigated using high-resolution imaging techniques and nondestructive in situ surface analysis. Total organic carbon analysis of the coprolite and the sediment revealed values of 28.9 and 8.9% respectively. The soft tissues from the tadpole and the coprolite were found to be composed of 0.5 to 1 μm-sized spheres and rod shapes. These features are interpreted as the fossil remains of bacterial biofilms consisting probably of heterotrophic bacteria and fossilised extracellular polymeric substances. They became fossilised while in the process of degrading the organic matter of the organism and the coprolite. Comparison with a modern marine biofilm revealed morphologic details identical to those observed in the fossil bacterial biofilms. Although the fossil biofilms on both macrofossils exhibited identical microtextures, their mode of preservation was inhomogeneous and varied between calcium phosphate and an as yet unidentified mineral phase consisting mainly of Si, Ca, Ti, P, and S, but also showing the presence of Mg, Al, and Fe. The coprolite consists purely of fossilised bacterial cells in a densely packed arrangement and associated fossilised extracellular polymeric substances.In addition to preliminary imaging and energy-dispersive X-ray analysis, both the fossil biofilms and the sediment were investigated by nondestructive in situ analysis using time of flight-secondary ion mass spectroscopy (ToF-SIMS). The mass spectra obtained on the coprolite in mass-resolved chemical mapping mode allowed the tentative identification of a number of organic secondary ion species. Some spectra appear to indicate the presence of bacterial hopanoids, but further work using standard techniques such as gas chromatography mass spectroscopy is needed to conclusively verify the presence of these substances. Nevertheless, ToF-SIMS chemical maps were successfully correlated with electron microscopy images, allowing the correlation of molecular spectra, the spatial distribution of individual organic species, and specific morphologic features to demonstrate the potential of this approach in the analysis of microfossils.  相似文献   
993.
The oxygen fugacity of the Dar al Gani 476 martian basalt is determined to be quartz-fayalite-magnetite (QFM) −2.3 ± 0.4 through analysis of olivine, low-Ca pyroxene, and Cr-spinel and is in good agreement with revised results from Fe-Ti oxides that yield QFM −2.5 ± 0.7. This estimate falls within the range of oxygen fugacity for the other martian basalts, QFM −3 to QFM −1. Oxygen fugacity in martian basalts correlates with 87Sr/86Sr, 143Nd/144Nd, and La/Yb ratios, indicating that the mantle source of the basalts is reduced and that assimilation of crust-like material controls the oxygen fugacity. This allows constraints to be placed on the oxidation state of the martian mantle and on the nature of assimilated crustal material. The assimilated material may be the product of early and extensive hydrothermal alteration of the martian crust, or it may be amphibole- or phlogopite-bearing basaltic rock within the crust. In either case, water may play a significant role in the oxidation of basaltic magmas on Mars, although it may be secondary to assimilation of ferric iron-rich material.  相似文献   
994.
One-hundred fluid inclusions in Silurian marine halite were analyzed in order to determine the major-ion composition of Silurian seawater. The samples analyzed were from three formations in the Late Silurian Michigan Basin, the A-1, A-2, and B Evaporites of the Salina Group, and one formation in the Early Silurian Canning Basin (Australia), the Mallowa Salt of the Carribuddy Group. The results indicate that the major-ion composition of Silurian seawater was not the same as present-day seawater. The Silurian ocean had lower concentrations of Mg2+, Na+, and SO42−, and much higher concentrations of Ca2+ relative to the ocean’s present-day composition. Furthermore, Silurian seawater had Ca2+ in excess of SO42−. Evaporation of Silurian seawater of the composition determined in this study produces KCl-type potash minerals that lack the MgSO4-type late stage salts formed during the evaporation of present-day seawater. The relatively low Na+ concentrations in Silurian seawater support the hypothesis that oscillations in the major-ion composition of the oceans are primarily controlled by changes in the flux of mid-ocean ridge brine and riverine inputs and not global or basin-scale, seawater-driven dolomitization. The Mg2+/Ca2+ ratio of Silurian seawater was ∼1.4, and the K+/Ca2+ ratio was ∼0.3, both of which differ from the present-day counterparts of 5 and 1, respectively. Seawaters with Mg2+/Ca2+ <2 facilitate the precipitation of low-magnesian calcite (mol % Mg < 4) marine ooids and submarine carbonate cements whereas seawaters with Mg2+/Ca2+ >2 (e.g., modern seawater) facilitate the precipitation of aragonite and high-magnesian calcite. Therefore, the early Paleozoic calcite seas were likely due to the low Mg2+/Ca2+ ratio of seawater, not the pCO2 of the Silurian atmosphere.  相似文献   
995.
Adsorption, complexation, and dissolution reactions strongly influenced the transport of metal ions complexed with ethylenediaminetetraacetic acid (EDTA) in a predominantly quartz-sand aquifer during two tracer tests conducted under mildly reducing conditions at pH 5.8 to 6.1. In tracer test M89, EDTA complexes of zinc (Zn) and nickel (Ni), along with excess free EDTA, were injected such that the lower portion of the tracer cloud traveled through a region with adsorbed manganese (Mn) and the upper portion of the tracer cloud traveled through a region with adsorbed Zn. In tracer test S89, Ni- and Zn-EDTA complexes, along with excess EDTA complexed with calcium (Ca), were injected into a region with adsorbed Mn. The only discernable chemical reaction between Ni-EDTA and the sediments was a small degree of reversible adsorption leading to minor retardation. In the absence of adsorbed Zn, the injected Zn was displaced from EDTA complexes by iron(III) [Fe(III)] dissolved from the sediments. Displacement of Zn by Fe(III) on EDTA became increasingly thermodynamically favorable with decreasing total EDTA concentration. The reaction was slow compared to the time-scale of transport. Free EDTA rapidly dissolved aluminum (Al) from the sediments, which was subsequently displaced slowly by Fe. In the portion of tracer cloud M89 that traveled through the region contaminated with adsorbed Zn, little displacement of Zn complexed with EDTA was observed, and Al was rapidly displaced from EDTA by Zn desorbed from the sediments, in agreement with equilibrium calculations. In tracer test S89, desorption of Mn dominated over the more thermodynamically favorable dissolution of Al oxyhydroxides. Comparison with results from M89 suggests that dissolution of Al oxyhydroxides in coatings on these sediment grains by Ca-EDTA was rate-limited whereas that by free EDTA reached equilibrium on the time-scale of transport. Rates of desorption are much faster than rates of dissolution of Fe oxyhydroxides from sediment-grain surfaces and, therefore, adsorbed metal ions can strongly influence the speciation of ligands like EDTA in soils and sediments, especially over small temporal and spatial scales.  相似文献   
996.
Although the flux of molecular O2 between the atmosphere and the subsurface is intrinsically linked to the net soil production of greenhouse gasses, few studies have focused on the controls affecting the isotopic composition of O2 in the subsurface. Here, we developed and tested a stable oxygen isotope tracer technique and gas transport modeling approach to evaluate O2 cycling and fluxes from the subsurface that used an environmentally controlled soil mescosm. We measured the O2 and δ18O2 profiles in a model unsaturated soil zone and quantified the O2 consumption rates and the O2 isotope fractionation factors resulting from the combined processes of subsurface microbial (including bacteria, fungi, and protozoa) consumption of O2 and diffusive influx of O2 from the atmosphere. We found that at high respiration rates in the mesocosm, there appeared to be very little isotope fractionation of O2 by soil microorganisms. Although the mesocosm respiration rates are not typical of natural soils in northern temperate climes, they may be more representative of soils in warm and moist tropical environments. Our findings caution against the indiscriminate application of laboratory-determined oxygen isotope fractionation factors to field settings. The oxygen isotope tracer and modeling approach demonstrated here may be applied to gain a better understanding of biogenic gas production and O2 cycling in subsurface systems and soils.  相似文献   
997.
Magmas erupted at mid-ocean ridges (MORB) result from decompression melting of upwelling mantle. However, the mechanism of melt transport from the source region to the surface is poorly understood. It is debated whether melt is transported through melt-filled conduits or cracks on short time scales (<∼ 103 yrs), or whether there is a significant component of slow, equilibrium porous flow on much longer time scales (>∼ 103-104 yrs). Radiogenic excess 226Ra in MORB indicates that melt is transported from the melting region on time scales less than the half life of 226Ra (∼1600 yrs), and has been used to argue for fast melt transport from the base of the melting column. However, excess 226Ra can be generated at the bottom of the melt column, during the onset of melting, and at the top of the melt column by reactive porous flow. Determining the depth at which 226Ra is generated is critical to interpreting the rate and mechanism of magma migration. A recent compilation of high quality U-series isotope data show that in many young basalts, 226Ra excess in MORB is negatively correlated with 230Th excess. The data suggest that 226Ra excess is generated independently of 230Th excess, and cannot be explained by “dynamic” or fractional melting, where observed radiogenic excesses are all generated at the base of the melt column. One explanation is that the negative correlation of activity ratios is a result of mixing of slow moving melt that has travelled through reactive, low-porosity pathways and relatively fast moving melt that has been transported in unreactive high-porosity channels. We investigate this possibility by calculating U-series disequilibria in a melting column in which high-porosity, unreactive channels form within a low-porosity matrix that is undergoing melting. The results show that the negative correlation of 226Ra and 230Th excesses observed in MORB can be produced if ∼60% of the total melt flux travels through the low-porosity matrix. This melt maintains 226Ra excesses via chromatographic fractionation of Ra and Th during equilibrium transport. Melt that travels through the unreactive, high-porosity channels is not able to maintain significant 226Ra excesses because Ra and Th are not fractionated from each other during transport and the transport time for melt in the channels to reach the top of the melt column is longer than the time scale for 226Ra excesses to decay. Mixing of melt from the high porosity channels with melt from the low-porosity matrix at the top of the melting column can produce a negative correlation of 226Ra and 230Th excesses with the slope and magnitude observed in MORB. This transport process can also account for other aspects of the geochemistry of MORB, such as correlations between La/Yb, αSm/Nd, and Th/U and 226Ra and 230Th excess.  相似文献   
998.
The relationships between electrical conductivity, temperature, salinity, and density are studied for brackish Lake Issyk-Kul. These studies are based on a newly determined major ion composition, which for the open lake shows a mean absolute salinity of 6.06 g kg−1. The conductivity-temperature relationship of the lake water was determined experimentally showing that the lake water is about 1.25 times less conductive than seawater diluted to the same absolute salinity as that of the lake water. Based on these results, an algorithm is presented to calculate salinity from in-situ conductivity measurements. Applied to the field data, this shows small but important vertical salinity variations in the lake with a salinity maximum at 200 m and a freshening of the surface water with increasing proximity to the shores. The algorithm we adopt to calculate density agrees well with earlier measurements and shows that at 20°C and 1 atm Lake Issyk-Kul water is about 530 g m−3 denser than seawater at the same salinity. The temperature of maximum density at 1 atm is about 0.15°C lower than that for seawater diluted to the same salinity. Despite its small variations, salinity plays an important role, together with temperature changes, in the static stability and in the production of deep-water in this lake. Changes in salinity may have had important consequences on the mixing regime and the fate of inflowing river water over geological time. Uncharged silicic acid is negligible for the stability of the water column except near an ∼15 m thick nepheloid layer observed at the bottom of the deep basin.  相似文献   
999.
Climate change impacts on U.S. Coastal and Marine Ecosystems   总被引:1,自引:0,他引:1  
Increases in concentrations of greenhouse gases projected for the 21st century are expected to lead to increased mean global air and ocean temperatures. The National Assessment of Potential Consequences of Climate Variability and Change (NAST 2001) was based on a series of regional and sector assessments. This paper is a summary of the coastal and marine resources sector review of potential impacts on shorelines, estuaries, coastal wetlands, coral reefs, and ocean margin ecosystems. The assessment considered the impacts of several key drivers of climate change: sea level change; alterations in precipitation patterns and subsequent delivery of freshwater, nutrients, and sediment; increased ocean temperature; alterations in circulation patterns; changes in frequency and intensity of coastal storms; and increased levels of atmospheric CO2. Increasing rates of sea-level rise and intensity and frequency of coastal storms and hurricanes over the next decades will increase threats to shorelines, wetlands, and coastal development. Estuarine productivity will change in response to alteration in the timing and amount of freshwater, nutrients, and sediment delivery. Higher water temperatures and changes in freshwater delivery will alter estuarine stratification, residence time, and eutrophication. Increased ocean temperatures are expected to increase coral bleaching and higher CO2 levels may reduce coral calcification, making it more difficult for corals to recover from other disturbances, and inhibiting poleward shifts. Ocean warming is expected to cause poleward shifts in the ranges of many other organisms, including commercial species, and these shifts may have secondary effects on their predators and prey. Although these potential impacts of climate change and variability will vary from system to system, it is important to recognize that they will be superimposed upon, and in many cases intensify, other ecosystem stresses (pollution, harvesting, habitat destruction, invasive species, land and resource use, extreme natural events), which may lead to more significant consequences.  相似文献   
1000.
Although a number of methods for calculating dynamic pseudo-functions have been developed over the years, there is still a lack of understanding as to why a certain method will succeed in some cases but fail in others. In this paper, we describe the results of an assessment of several upscaling methods, namely the Kyte and Berry (KB) method, the Stone method, the Hewett and Archer (HA) method and the Transmissibility-Weighted (TW) method. We have analyzed the equations for deriving the methods and investigated the results of numerical simulations of gas displacing oil, in a variety of models to enable us to gain new insights into these, and related, upscaling methods. In particular, some novel observations on methods based on fluid potential are presented and the issue of using predicted fluid mobilities as a criterion of accuracy of an upscaling method is clarified.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号