首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5395篇
  免费   220篇
  国内免费   54篇
测绘学   100篇
大气科学   452篇
地球物理   1379篇
地质学   1828篇
海洋学   487篇
天文学   870篇
综合类   19篇
自然地理   534篇
  2022年   24篇
  2021年   71篇
  2020年   68篇
  2019年   78篇
  2018年   105篇
  2017年   92篇
  2016年   147篇
  2015年   143篇
  2014年   146篇
  2013年   257篇
  2012年   169篇
  2011年   259篇
  2010年   190篇
  2009年   266篇
  2008年   228篇
  2007年   210篇
  2006年   228篇
  2005年   192篇
  2004年   183篇
  2003年   167篇
  2002年   165篇
  2001年   92篇
  2000年   106篇
  1999年   91篇
  1998年   89篇
  1997年   68篇
  1996年   73篇
  1995年   96篇
  1994年   84篇
  1993年   67篇
  1992年   71篇
  1991年   58篇
  1990年   76篇
  1989年   64篇
  1988年   64篇
  1987年   71篇
  1986年   61篇
  1985年   79篇
  1984年   101篇
  1983年   82篇
  1982年   75篇
  1981年   62篇
  1980年   74篇
  1979年   65篇
  1978年   61篇
  1977年   46篇
  1976年   56篇
  1975年   58篇
  1974年   48篇
  1973年   67篇
排序方式: 共有5669条查询结果,搜索用时 15 毫秒
81.
The Gaia Hypothesis: Fact, Theory, and Wishful Thinking   总被引:4,自引:0,他引:4  
Organisms can greatly affect their environments, and the feedback coupling between organisms and their environments can shape the evolution of both. Beyond these generally accepted facts, the Gaia hypothesis advances three central propositions: (1) that biologically mediated feedbacks contribute to environmental homeostasis, (2) that they make the environment more suitable for life, and (3) that such feedbacks should arise by Darwinian natural selection. These three propositions do not fare well under close scrutiny. (1) Biologically mediated feedbacks are not intrinsically homeostatic. Many of the biological mechanisms that affect global climate are destabilizing, and it is likely that the net effect of biological feedbacks will be to amplify, not dampen, global warming. (2) Nor do biologically mediated feedbacks necessarily enhance the environment, although it will often appear as if this were the case, simply because natural selection will favor organisms that do well in their environments – which means doing wellunder the conditions that they and their co-occurring species have created. (3) Finally, Gaian feedbacks can evolve by natural selection, but so can anti-Gaian feedbacks. Daisyworld models evolve Gaian feedback because they assume that any trait that improves the environment will also give a reproductive advantage to its carriers (over other organisms that share the same environment). In the real world, by contrast, natural selection favors any trait that gives its carriers a reproductive advantage over its non-carriers, whether it improves or degrades the environment (and thereby benefits or hinders its carriers and non-carriers alike). Thus Gaian and anti-Gaian feedbacks are both likely to evolve.  相似文献   
82.
Controls on coal metamorphism can be complex. In this paper, we examine four Paleozoic coalfields: the western Kentucky portion of the Illinois Basin, the Pennsylvania anthracite fields, the South Wales Coalfield, and the Bowen Basin. An increase in temperature with depth of burial is certainly a factor in coal metamorphism. In many coalfields, however, including the coalfields reviewed here, it has become apparent that such a simple mechanism does not explain the coal rank patterns observed. The flow of hydrothermal fluids through the coals has been proposed as a cause of coal metamorphism. Evidence includes inverted rank gradients, elevated CFL as an indicator of brine fluids, isotopic evidence for hydrothermal fluids, and vein and cleat mineral assemblages. In any case, multiple hypotheses must often be evaluated in the examination of any coalfield since the simple paradigm of coal rank increases with a simple increase in temperature with increasing depth does not fit the evidence observed in many cases.  相似文献   
83.
The Gustav Group of the James Ross Basin, Antarctic Peninsula, forms part of a major Southern Hemisphere Cretaceous reference section. Palynological data, chiefly from dinoflagellate cysts, integrated with macrofaunal evidence and strontium isotope stratigraphy, indicate that the Gustav Group, which is approximately 2.6 km thick, is Aptian–Coniacian in age. Aptian–Coniacian palynofloras in the James Ross Basin closely resemble coeval associations from Australia and New Zealand, and Australian palynological zonation schemes are applicable to the Gustav Group. The lowermost units, the coeval Pedersen and Lagrelius Point formations, have both yielded early Aptian dinoflagellate cysts. Because the overlying Kotick Point Formation is of early to mid Albian age, the Aptian/Albian boundary is placed, questionably, at the Lagrelius Point Formation–Kotick Point Formation boundary on James Ross Island, and this transition may be unconformable. Although the Kotick Point Formation is largely early Albian on dinoflagellate cyst evidence, the uppermost part of the formation appears to be of mid Albian age. This differentiation of the early and mid Albian has refined the age of the formation, previously considered to be Aptian–Albian, based on macrofaunal evidence. The Whisky Bay Formation is of late Albian to latest Turonian age on dinoflagellate cyst evidence and this supports the macrofaunal ages. Late Albian palynofloras have been recorded from the Gin Cove, lower Tumbledown Cliffs, Bibby Point and the lower–middle Lewis Hill members. However, the Cenomanian age of the upper Tumbledown Cliffs and Rum Cove members, based on molluscan evidence, is not supported by the dinoflagellate cyst floras and further work is required on this succession. The uppermost part of the Whisky Bay Formation in north-west James Ross Island is of mid to late Turonian age and this is confirmed by strontium isotope stratigraphy. The uppermost unit, the Hidden Lake Formation, is Coniacian in age on both palaeontological and strontium isotope evidence. The uppermost part of the formation appears to be early Santonian based on dinoflagellate cysts, but strontium isotope stratigraphy constrains this as being no younger than late Coniacian. This refined palynostratigraphy greatly improves the potential of the James Ross Basin as a major Cretaceous Southern Hemisphere reference section.  相似文献   
84.
85.
Several potential dust sources, including generic sources of sparsely vegetated alluvium, playa deposits, and anthropogenic emissions, as well as the area around Owens Lake, California, affect the composition of modern dust in the southwestern United States. A comparison of geochemical analyses of modern and old (a few thousand years) dust with samples of potential local sources suggests that dusts reflect four primary sources: (1) alluvial sediments (represented by Hf, K, Rb, Zr, and rare-earth elements, (2) playas, most of which produce calcareous dust (Sr, associated with Ca), (3) the area of Owens (dry) Lake, a human-induced playa (As, Ba, Li, Pb, Sb, and Sr), and (4) anthropogenic and/or volcanic emissions (As, Cr, Ni, and Sb). A comparison of dust and source samples with previous analyses shows that Owens (dry) Lake and mining wastes from the adjacent Cerro Gordo mining district are the primary sources of As, Ba, Li, and Pb in dusts from Owens Valley. Decreases in dust contents of As, Ba, and Sb with distance from Owens Valley suggest that dust from southern Owens Valley is being transported at least 400 km to the east. Samples of old dust that accumulated before European settlement are distinctly lower in As, Ba, and Sb abundances relative to modern dust, likely due to modern transport of dust from Owens Valley. Thus, southern Owens Valley appears to be an important, geochemically distinct, point source for regional dust in the southwestern United States.  相似文献   
86.
The effects of nutrients, trace elements, and trophic complexity on benthic photosynthesis and respriation were studied in the Paxtuxent River estuary near St. Leonard, Maryland. Experiments were conducted over three years (1995–1997) in mesocosms containing riverine sediment and water. The experimental design was 2×2×3 factorial with two levels of nutrients (ambient and + nutrients), two of trace elements (ambient and + trace elements) and three of trophic complexity (plankton, plankton + fish, and plankton + fish + benthos). Trace elements included arsenic (As), copper (Cu), and cadmium (Cd). The experiment was conducted three times in 1995 and 1997 and four times in 1996. In 1995 and 1996, sediments were muddy, while in the final year sediments were sandy. In mesocoms with sandy sediments, nutrient additions increased benthic photosynthesis overall, while trace element additions increased benthic photosynthesis in two of three experimental runs. Benthic photosynthesis in these mesocosms appeared to be related to nitrogen loading. Benthic respiration increased in nutrient and trace element amended mesocosms with sandy sediments, apparently in response to higher benthic photosynthesis. Increasing trophic complexity, particularly the presence of benthic organisms, also increased benthic respiration in mesocosms with sandy sediments. There were no effects of nutrient or trace element additions on benthic photosynthesis and respiration when the sediments were muddy. The lack of consistent responses to nutrient additions was surprising given that benthic respiration rates (and presumably nutrient regeneration) were similar in all three years, regardless of sediment type. Muddy, sediments did not mask, the effects of nutrient addition by supplying more nutrients to benthic microalgae than sandy sediments. In 1996, the presence of filter feeding bivalves increased the relative heterotrophy of sediments, measured as production: respiration. Consistent with increased heterotrophy, effluxes of ammonium and soluble reactive phosphorus from sediments were greater in mesocosms containing benthic organisms. Anthropogenically-induced changes in estuaries, such as loading of nutrients and trace elements or reduced trophic complexity, can have important effects on benthic processes and potentially pelagic processes through feedback mechanisms.  相似文献   
87.
We apply iterative resolution estimation to least‐squares Kirchhoff migration. Reviewing the theory of iterative optimization uncovers the common origin of different optimization methods. This allows us to reformulate the pseudo‐inverse, model resolution and data resolution operators in terms of effective iterative estimates. When applied to Kirchhoff migration, plots of the diagonal of the model resolution matrix reveal low illumination areas on seismic images and provide information about image uncertainties. Synthetic and real data examples illustrate the proposed technique and confirm the theoretical expectations.  相似文献   
88.
89.
90.
Mapping and laboratory analysis of the sediment—landform associations in the proglacial area of polythermal Storglaciären, Tarfala, northern Sweden, reveal six distinct lithofacies. Sandy gravel, silty gravel, massive sand and silty sand are interpreted as glaciofluvial in origin. A variable, pervasively deformed to massive clast‐rich sandy diamicton is interpreted as the product of an actively deforming subglacial till layer. Massive block gravels, comprising two distinctive moraine ridges, reflect supraglacial sedimentation and ice‐marginal and subglacial reworking of heterogeneous proglacial sediments during the Little Ice Age and an earlier more extensive advance. Visual estimation of the relative abundance of these lithofacies suggests that the sandy gravel lithofacies is of the most volumetric importance, followed by the diamicton and block gravels. Sedimentological analysis suggests that the role of a deforming basal till layer has been the dominant factor controlling glacier flow throughout the Little Ice Age, punctuated by shorter (warmer and wetter climatic) periods where high water pressures may have played a more important role. These results contribute to the database that facilitates discrimination of past glacier thermal regimes and dynamics in areas that are no longer glacierized, as well as older glaciations in the geological record.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号