首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42944篇
  免费   910篇
  国内免费   279篇
测绘学   838篇
大气科学   2932篇
地球物理   8698篇
地质学   15481篇
海洋学   3938篇
天文学   9368篇
综合类   103篇
自然地理   2775篇
  2022年   276篇
  2021年   499篇
  2020年   554篇
  2019年   633篇
  2018年   1092篇
  2017年   1077篇
  2016年   1194篇
  2015年   696篇
  2014年   1154篇
  2013年   2050篇
  2012年   1326篇
  2011年   1832篇
  2010年   1585篇
  2009年   1999篇
  2008年   1814篇
  2007年   1860篇
  2006年   1742篇
  2005年   1212篇
  2004年   1215篇
  2003年   1231篇
  2002年   1129篇
  2001年   934篇
  2000年   881篇
  1999年   793篇
  1998年   791篇
  1997年   777篇
  1996年   638篇
  1995年   645篇
  1994年   569篇
  1993年   508篇
  1992年   468篇
  1991年   468篇
  1990年   496篇
  1989年   442篇
  1988年   421篇
  1987年   453篇
  1986年   463篇
  1985年   568篇
  1984年   619篇
  1983年   604篇
  1982年   556篇
  1981年   503篇
  1980年   490篇
  1979年   452篇
  1978年   424篇
  1977年   420篇
  1976年   389篇
  1975年   400篇
  1974年   375篇
  1973年   416篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
981.
982.
983.
L. E. Levin 《Geotectonics》2006,40(5):357-366
The lithosphere and asthenosphere make up a common geodynamic system but are characterized by different physical parameters. The former has a temperature of 1200–1300°C, a density of 3.3 g/cm3, and a viscosity of 1022 poise, while the latter has a density of 3.23 g/cm3, a viscosity in the range 1021-1018–19 poise, and a temperature from 1200–1300°C to 1600–1700°C. The asthenosphere is distinguished by a great variability of its physical state in the lateral and vertical directions. This circumstance necessitates the recognition of the different types of the asthenosphere: seismic (LVZ zone), electrical, thermal, and seismological. The structure and the physical state of the thermal asthenosphere is considered in this paper on the basis of P-T parameters. Its state normally fits viscous Newtonian liquid beneath the continents and provides partial (5–20%) melting in spreading zones and along continental margins. No partial melting is detected beneath the main portion of the continents. The interaction between the asthenosphere and lithosphere is characterized by spatiotemporal migration of partial melting zones and asthenosphere upwelling, and such interaction determines the entire range of geodynamic processes from spreading and rifting to collision and vertical motions of different senses.  相似文献   
984.
985.
986.
Silicic volcanic deposits (>65 wt% SiO2), which occur as domes, lavas and pyroclastic deposits, are relatively abundant in the Macolod Corridor, SW Luzon, Philippines. At Makiling stratovolcano, silicic domes occur along the margins of the volcano and are chemically similar to the silicic lavas that comprise part of the volcano. Pyroclastic flows are associated with the Laguna de Bay Caldera and these are chemically distinct from the domes and lavas at Makiling stratovolcano. As a whole, samples from the Laguna de Bay Caldera contain lower concentrations of MgO and higher concentrations of Fe2O3(t) than the samples from domes and lavas. The Laguna de Bay samples are more enriched in incompatible trace elements. The silicic rocks from the domes, Makiling Volcano and Laguna de Bay Caldera all contain high alkalis and high K2O/Na2O ratios. Melting experiments of primitive basalts and andesites demonstrate that it is difficult to produce high K2O/Na2O silicic magmas by fractional crystallization or partial melting of a low K2O/Na2O source. However, recent melting experiments (Sisson et al., Contrib Mineral Petrol 148:635–661, 2005) demonstrate that extreme fractional crystallization or partial melting of K-rich basalts can produce these silicic magmas. Our model for the generation of the silicic magmas in the Macolod Corridor requires partial melting of mantle-derived, evolved, moderate to K-rich, crystallized calc-alkaline magmas that ponded and crystallized in the mid-crust. Major and trace element variations, along with oxygen isotopes and ages of the deposits, are consistent with this model. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   
987.
988.
989.
The tectonic evolution of the Por’ya Guba segment of the White Sea Rift System began in the late Paleoproterozoic, i.e., soon after completion of the Svecofennian collision. The fracture system that controlled localization of the lamproite dike complex was formed under conditions of horizontal compression combined with shear. Subsequently, this system predetermined the location of a rift-graben segment that formed as a result of simple shear. The reactivation of the rift system in the Middle Paleozoic proceeded in two stages. The first stage, when strike-slip movements along previously formed faults predominated, resulted in formation of quartz-carbonate veins bearing base-metal mineralization. The veins that filled the shear fractures opened owing to local reorientation of the stress field. The second stage fitted the transtension conditions, and the Late Devonian alkaline ultramafic dikes of this stage introded into the already existing fracture system, which was oriented at a roughly right angle to the predominant stress orientation.  相似文献   
990.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号