首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5521篇
  免费   228篇
  国内免费   52篇
测绘学   113篇
大气科学   438篇
地球物理   1424篇
地质学   1862篇
海洋学   553篇
天文学   835篇
综合类   19篇
自然地理   557篇
  2022年   26篇
  2021年   65篇
  2020年   76篇
  2019年   85篇
  2018年   111篇
  2017年   92篇
  2016年   153篇
  2015年   148篇
  2014年   161篇
  2013年   272篇
  2012年   171篇
  2011年   279篇
  2010年   205篇
  2009年   294篇
  2008年   236篇
  2007年   223篇
  2006年   223篇
  2005年   207篇
  2004年   190篇
  2003年   163篇
  2002年   166篇
  2001年   86篇
  2000年   110篇
  1999年   89篇
  1998年   91篇
  1997年   73篇
  1996年   71篇
  1995年   93篇
  1994年   89篇
  1993年   67篇
  1992年   68篇
  1991年   59篇
  1990年   74篇
  1989年   71篇
  1988年   65篇
  1987年   71篇
  1986年   67篇
  1985年   76篇
  1984年   98篇
  1983年   85篇
  1982年   74篇
  1981年   64篇
  1980年   75篇
  1979年   59篇
  1978年   62篇
  1977年   45篇
  1976年   58篇
  1975年   55篇
  1974年   45篇
  1973年   57篇
排序方式: 共有5801条查询结果,搜索用时 187 毫秒
971.
Aquifer storage and recovery (ASR) is the artificial recharge and temporary storage of water in an aquifer when water is abundant, and recovery of all or a portion of that water when it is needed. One key limiting factor that still hinders the effectiveness of ASR is the high costs of constructing, maintaining, and operating the artificial recharge systems. Here we investigate a new recharge method for ASR in near‐surface unconsolidated aquifers that uses small‐diameter, low‐cost wells installed with direct‐push (DP) technology. The effectiveness of a DP well for ASR recharge is compared with that of a surface infiltration basin at a field site in north‐central Kansas. The performance of the surface basin was poor at the site due to the presence of a shallow continuous clay layer, identified with DP profiling methods, that constrained the downward movement of infiltrated water and significantly reduced the basin recharge capacity. The DP well penetrated through this clay layer and was able to recharge water by gravity alone at a much higher rate. Most importantly, the costs of the DP well, including both the construction and land costs, were only a small fraction of those for the infiltration basin. This low‐cost approach could significantly expand the applicability of ASR as a water resources management tool to entities with limited fiscal resources, such as many small municipalities and rural communities. The results of this investigation demonstrate the great potential of DP wells as a new recharge option for ASR projects in near‐surface unconsolidated aquifers.  相似文献   
972.
Nuclear magnetic resonance (NMR) logging provides a new means of estimating the hydraulic conductivity (K) of unconsolidated aquifers. The estimation of K from the measured NMR parameters can be performed using the Schlumberger‐Doll Research (SDR) equation, which is based on the Kozeny–Carman equation and initially developed for obtaining permeability from NMR logging in petroleum reservoirs. The SDR equation includes empirically determined constants. Decades of research for petroleum applications have resulted in standard values for these constants that can provide accurate estimates of permeability in consolidated formations. The question we asked: Can standard values for the constants be defined for hydrogeologic applications that would yield accurate estimates of K in unconsolidated aquifers? Working at 10 locations at three field sites in Kansas and Washington, USA, we acquired NMR and K data using direct‐push methods over a 10‐ to 20‐m depth interval in the shallow subsurface. Analysis of pairs of NMR and K data revealed that we could dramatically improve K estimates by replacing the standard petroleum constants with new constants, optimal for estimating K in the unconsolidated materials at the field sites. Most significant was the finding that there was little change in the SDR constants between sites. This suggests that we can define a new set of constants that can be used to obtain high resolution, cost‐effective estimates of K from NMR logging in unconsolidated aquifers. This significant result has the potential to change dramatically the approach to determining K for hydrogeologic applications.  相似文献   
973.
We introduce a simple correction to coastal heads for constant‐density groundwater flow models that contain a coastal boundary, based on previous analytical solutions for interface flow. The results demonstrate that accurate discharge to the sea in confined aquifers can be obtained by direct application of Darcy's law (for constant‐density flow) if the coastal heads are corrected to ((α + 1)/α)hs ? B/2α, in which hs is the mean sea level above the aquifer base, B is the aquifer thickness, and α is the density factor. For unconfined aquifers, the coastal head should be assigned the value . The accuracy of using these corrections is demonstrated by consistency between constant‐density Darcy's solution and variable‐density flow numerical simulations. The errors introduced by adopting two previous approaches (i.e., no correction and using the equivalent fresh water head at the middle position of the aquifer to represent the hydraulic head at the coastal boundary) are evaluated. Sensitivity analysis shows that errors in discharge to the sea could be larger than 100% for typical coastal aquifer parameter ranges. The location of observation wells relative to the toe is a key factor controlling the estimation error, as it determines the relative aquifer length of constant‐density flow relative to variable‐density flow. The coastal head correction method introduced in this study facilitates the rapid and accurate estimation of the fresh water flux from a given hydraulic head measurement and allows for an improved representation of the coastal boundary condition in regional constant‐density groundwater flow models.  相似文献   
974.
This paper presents real‐time hybrid earthquake simulation (RTHS) on a large‐scale steel structure with nonlinear viscous dampers. The test structure includes a three‐story, single‐bay moment‐resisting frame (MRF), a three‐story, single‐bay frame with a nonlinear viscous damper and associated bracing in each story (called damped braced frame (DBF)), and gravity load system with associated seismic mass and gravity loads. To achieve the accurate RTHS results presented in this paper, several factors were considered comprehensively: (1) different arrangements of substructures for the RTHS; (2) dynamic characteristics of the test setup; (3) accurate integration of the equations of motion; (4) continuous movement of the servo‐controlled hydraulic actuators; (5) appropriate feedback signals to control the RTHS; and (6) adaptive compensation for potential control errors. Unlike most previous RTHS studies, where the actuator stroke was used as the feedback to control the RTHS, the present study uses the measured displacements of the experimental substructure as the feedback for the RTHS, to enable accurate displacements to be imposed on the experimental substructure. This improvement in approach was needed because of compliance and other dynamic characteristics of the test setup, which will be present in most large‐scale RTHS. RTHS with ground motions at the design basis earthquake and maximum considered earthquake levels were successfully performed, resulting in significant nonlinear response of the test structure, which makes accurate RTHS more challenging. Two phases of RTHS were conducted: in the first phase, the DBF is the experimental substructure, and in the second phase, the DBF together with the MRF is the experimental substructure. The results from the two phases of RTHS are presented and compared with numerical simulation results. An evaluation of the results shows that the RTHS approach used in this study provides a realistic and accurate simulation of the seismic response of a large‐scale structure with rate‐dependent energy dissipating devices. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
975.
976.
Erosion rates are key to quantifying the timescales over which different topographic and geomorphic domains develop in mountain landscapes. Geomorphic and terrestrial cosmogenic nuclide (TCN) methods were used to determine erosion rates of the arid, tectonically quiescent Ladakh Range, northern India. Five different geomorphic domains are identified and erosion rates are determined for three of the domains using TCN 10Be concentrations. Along the range divide between 5600 and 5700 m above sea level (asl), bedrock tors in the periglacial domain are eroding at 5.0 ± 0.5 to 13.1 ± 1.2 meters per million years (m/m.y.)., principally by frost shattering. At lower elevation in the unglaciated domain, erosion rates for tributary catchments vary between 0.8 ± 0.1 and 2.0 ± 0.3 m/m.y. Bedrock along interfluvial ridge crests between 3900 and 5100 m asl that separate these tributary catchments yield erosion rates <0.7 ± 0.1 m/m.y. and the dominant form of bedrock erosion is chemical weathering and grusification. Erosion rates are fastest where glaciers conditioned hillslopes above 5100 m asl by over‐steepening slopes and glacial debris is being evacuated by the fluvial network. For range divide tors, the long‐term duration of the erosion rate is considered to be 40–120 ky. By evaluating measured 10Be concentrations in tors along a model 10Be production curve, an average of ~24 cm is lost instantaneously every ~40 ky. Small (<4 km2) unglaciated tributary catchments and their interfluve bedrock have received very little precipitation since ~300 ka and the long‐term duration of their erosion rates is 300–750 ky and >850 ky, respectively. These results highlight the persistence of very slow erosion in different geomorphic domains across the southwestern slope of the Ladakh Range, which on the scale of the orogen records spatial changes in the locus of deformation and the development of an orogenic rain shadow north of the Greater Himalaya. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
977.
A growing body of field, theoretical and numerical modelling studies suggests that predicting river response to even major changes in input variables is difficult. Rivers are seen to adjust rapidly and variably through time and space as well as changing independently of major driving variables. Concepts such as Self‐Organized Criticality (SOC) are considered to better reflect the complex interactions and adjustments occurring in systems than traditional approaches of cause and effect. This study tests the hypothesis that riverbank mass failures which occurred both prior to, and during, an extreme flood event in southeast Queensland (SEQ) in 2011 are a manifestation of SOC. Each wet‐flow failure is somewhat analogous to the ‘avalanche’ described in the initial sand‐pile experiments of Bak et al. (Physical Review Letters, 1987, 59(4), 381–384) and, due to the use of multitemporal LiDAR, the time period of instability can be effectively constrained to that surrounding the flood event. The data is examined with respect to the key factors thought to be significant in evaluating the existence of SOC including; non‐linear temporal dynamics in the occurrence of disturbance events within the system; an inverse power‐law relation between the magnitude and frequency of the events; the existence of a critical state to which the system readjusts after a disturbance; the existence of a cascading processes mechanism by which the same process can initiate both low‐magnitude and high‐magnitude events. While there was a significant change in the frequency of mass failures pre‐ and post‐flood, suggesting non‐linear temporal dynamics in the occurrence of disturbance events, the data did not fit an inverse power‐law within acceptable probability and other models were found to fit the data better. Likewise, determining a single ‘critical’ state is problematic when a variety of feedbacks and multiple modes of adjustment are likely to have operated throughout this high magnitude event. Overall, the extent to which the data supports a self‐organized critical state is variable and highly dependent upon inferential arguments. Investigating the existence of SOC, however, provided results and insights that are useful to the management and future prediction of these features. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
978.
Australian meteorological observers started using the World Meteorological Organization (WMO) weather coding system in the 1950s. This system is still in use around the world today. However, observing and recording the weather in an organized and systematic manner had been ongoing for over 100 years prior to the adoption of this coding system, and much like Australia, most countries will have historical meteorological records. In this paper we compare the wind erosion of two of the greatest droughts in Australian recorded history; the World War II (WWII) Drought (1937–1945) and the Millennium Drought (2001–2009). To do this we analysed previously unavailable meteorological observer records from the Australian Bureau of Meteorology (ABM). Wind erosion records, mostly in long‐hand written form, were translated to the modern WMO coding system for the WWII Drought and compared with the wind erosion of Australia's recently‐ended Millennium Drought, one of the longest and harshest on record. We quantify wind erosion using Dust Event Days (DED) and a modified version of a published Dust Storm Index (DSI) to show that wind erosion during the WWII Drought was up to 4.6 times higher than during the Millennium Drought. This study has international significance because it demonstrates a methodology for tracking changes in wind erosion over the past 75 years based on observer records available in every country with a history of organized weather observation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
979.
Monitoring of a well‐defined septic system groundwater plume and groundwater discharging to two urban streams located in southern Ontario, Canada, provided evidence of natural attenuation of background low level (ng/L) perchlorate (ClO4?) under denitrifying conditions in the field. The septic system site at Long Point contains ClO4? from a mix of waste water, atmospheric deposition, and periodic use of fireworks, while the nitrate plume indicates active denitrification. Plume nitrate (NO3?‐N) concentrations of up to 103 mg/L declined with depth and downgradient of the tile bed due to denitrification and anammox activity, and the plume was almost completely denitrified beyond 35 m from the tile bed. The ClO4? natural attenuation occurs at the site only when NO3?‐N concentrations are <0.3 mg/L, after which ClO4? concentrations decline abruptly from 187 ± 202 to 11 ± 15 ng/L. A similar pattern between NO3?‐N and ClO4? was found in groundwater discharging to the two urban streams. These findings suggest that natural attenuation (i.e., biodegradation) of ClO4? may be commonplace in denitrified aquifers with appropriate electron donors present, and thus, should be considered as a remediation option for ClO4? contaminated groundwater.  相似文献   
980.
Interaction between biotic and abiotic drivers of dynamics is an important topic in ecology. Despite numerous short-term studies, there is a paucity of evidence about how environmental structure modifies dynamics in marine systems. We quantified Zostera marina flowering and non-flowering shoot density annually from 1996 to 2012 around the Isles of Scilly, UK, parameterizing a population dynamic model. Flowering is structured in time and space, with temperature and flowering positively associated at some locations only. We found no evidence that flower production contributes to seagrass density but ‘patchiness’ was positively associated with flowering in the previous year. With evidence of substantial overwinter survival, findings support the hypothesis that local populations are maintained largely through vegetative reproduction but sexual reproduction may contribute to colonisation of vacant habitat. This long-term study (1) tests validity of shorter-term investigations, (2) quantifies interaction between biotic and abiotic factors and (3) promotes seagrass as a model ecosystem.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号